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a b s t r a c t 

The desire of companies to offer same-day delivery leads to interesting new routing optimization prob- 

lems. We study the complexity of single depot dispatching problems in which a delivery to a customer 

must occur within a pre-specified time after the customer places the order. Thus, each order has a re- 

lease date (when the order can be dispatched from the depot) and a service guarantee that implies a 

deadline (when the order needs to be delivered). A vehicle delivering an order cannot depart the depot 

before the order is released, and must arrive at the customer at or before the order’s deadline. We show 

that single and multiple vehicle variants where customers are located on a half-line can be solved to op- 

timality in polynomial time. This setting, as well as our results, generalize those found in Archetti, Feillet, 

and Speranza (2015). 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In dynamic delivery problems, vehicles deliver goods locally 

from an origin depot (or, perhaps a small number of origin depots) 

to customer locations, and the requests for delivery arise during 

the vehicle operating period; e.g., Azi, Gendreau, and Potvin 

(2012) . Although dynamic vehicle routing problems have received 

a significant amount of attention in the literature (see, for exam- 

ple, the surveys by Berbeglia, Cordeau, and Laporte (2010) ; Pillac, 

Gendreau, Guéret, and Medaglia (2013) , and Psaraftis, Wen, and 

Kontovas (2016) ), the class of dynamic delivery problems is just 

beginning to be explored. The defining characteristic in these prob- 

lems is that when customer requests become known, they not only 

have a deadline, which specifies the latest time the delivery can be 

made, but also a release date , which specifies the earliest time the 

goods to be delivered are ready to be dispatched from the depot. 

The ready time can be the time that a request is made, but it can 

also be later to account, for example, for order picking and staging. 

What makes vehicle routing problems with release dates inter- 

esting and challenging is the trade-off between delaying the dis- 

patch of a vehicle until more requests are ready, in order to build 

a route that serves many customers and has a low delivery cost 

per order, and dispatching a vehicle early, in order to have more 

time prior to deadlines for the vehicle to travel and deliver orders, 

i.e., replacing nonproductive time at the depot waiting for orders to 
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become ready with productive time on the road delivering orders. 

In dynamic settings, the challenge is even greater because of the 

uncertainty surrounding if and when future orders will be placed; 

delaying the dispatch of a vehicle increases the risk of being un- 

able to meet the deadline of future requests. 

Archetti, Feillet, and Speranza (2015) study the complexity of 

deterministic variants of some important classes of dynamic de- 

livery problems. Specifically, they propose the Traveling Salesman 

Problem with release dates (TSP-rd) in which a single vehicle op- 

erates one or more consecutive (non-overlapping in time) routes 

from a single depot, each time loading and delivering released or- 

ders to customer locations, and the Uncapacitated Vehicle Rout- 

ing Problem with release dates (UVRP-rd) which differs only in 

that the routes may overlap in time (because multiple vehicles 

are available to execute the routes). For each problem, the authors 

consider two variants: in one, the objective is to minimize total 

distance traveled while completing all delivery routes by a com- 

mon deadline T , and in the other the objective is to minimize the 

latest completion time of any route. Not surprisingly, all of these 

optimization problems are NP -hard when customer locations are 

nodes in a general network. However, the authors show that each 

of these problems is solvable in polynomial time for problem in- 

stances where customer locations and the depot are all points in 

the “real line” metric space R , with distance and time between 

x, y ∈ R given by d(x, y ) = | y − x | . 
Specifically, Archetti et al. (2015) develop dynamic program- 

ming algorithms for both variants of the TSP-rd problem that run 

in O ( n 3 ) time, and an O ( n 2 ) algorithm for UVRP-rd when mini- 

mizing distance traveled. In this paper, we propose alternative dy- 

namic programming algorithms with a complexity of O ( n 2 ) for the 
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same two variants of the TSP-rd problem on the half-line. Further- 

more, we extend the TSP-rd setting by considering service guaran- 

tees , which constrain each delivery to a customer to occur within 

a fixed amount of time S after the release date. We thus consider 

not only customer-specific release dates r i , but also a customer- 

specific delivery deadlines r i + S. Service guarantees are common 

in dynamic delivery contexts as retailers seek to offer instant grati- 

fication to consumers. For example, a retailer may guarantee online 

shoppers that an order will be delivered within two hours after the 

order is placed. Another environment where such a service guaran- 

tee arises naturally is meal delivery: “if your pizza is not delivered 

within 45 minutes after you place your order, it will be free.” In 

addition to the alternative algorithms for the variants considered 

in Archetti et al. (2015) , we propose dynamic programs for TSP-rd 

problems with service guarantees that (i) minimize the completion 

time of the last route and (ii) minimize the distance traveled while 

completing the last route by deadline T , running in O ( n 2 ) and O ( n 3 ) 

time for instances on the half-line, respectively. We also develop an 

O ( n 3 ) time algorithm for the UVRP-rd problem with service guar- 

antees on the half-line that minimizes distance traveled. 

The remainder of the paper is organized as follows. In Section 2 , 

we formally introduce the problems studied and the notation used 

throughout. In Section 3 , we prove a number of structural prop- 

erties of optimal delivery schedules. In Section 4 , we describe and 

analyze dynamic programming algorithms for single vehicle prob- 

lems. In Section 5 , we similarly describe and analyze a dynamic 

programming algorithm for the multiple vehicle problem minimiz- 

ing travel distance. Section 6 contains some qualitative insights and 

concluding remarks. 

2. A vehicle routing problem with release dates and order 

deadlines 

In this section, we introduce an extension of the TSP-rd prob- 

lem that includes order delivery deadlines. Let N = { 1 , . . . , n } be a 

set of customers located on the real half line R 

+ ≡ [0 , + ∞ ) , and 

assume that the single depot is located at x = 0 . Let the location 

of customer i ∈ N be given by τ i , and measure travel distances and 

times such that a round trip from the depot to i requires 2 τ i dis- 

tance and time. Note furthermore that a route traveling from the 

depot to customer i and back under these assumptions can also 

make deliveries to any set J of customers located such that τ j ≤ τ i 

for j ∈ J while still incurring 2 τ i distance and time. 

Suppose each customer i ∈ N places an order with a release time 

of r i , which implies the earliest possible time a vehicle dispatched 

to deliver at i can depart the depot. In the remainder, we will use 

“customer” and “order” interchangeably for simplicity. Let S be a 

common service guarantee applied to all orders, and therefore r i + 

S specifies the deadline time by which order i must be delivered 

at i . 

Assume that deliveries to customers occur instantaneously 

upon vehicle arrival, and that all deliveries are made by the vehicle 

on the outbound journey from the depot. Thus, the latest possible 

dispatch time l i from the depot such that the service guarantee at 

i is met is given by l i = r i + S − τi . We restrict attention only to in- 

stances where τ i ≤ S ; instances not meeting this condition are triv- 

ially infeasible. Furthermore, we also restrict attention to instances 

where the latest time by which the final delivery route must be 

completed, T , is such that T ≥ r i + S + τi for all i ∈ N . This condition 

essentially states that the company will only accept a customer or- 

der such that if it is completed by its deadline, the vehicle has 

time to return to the depot on time. In problems without individ- 

ual service guarantees, as considered in Archetti et al. (2015) , the 

equivalent is to ensure that T ≥ r i + 2 τi to avoid trivially infeasible 

instances. 

Throughout this paper, without loss of generality, we assume 

r i < r i +1 for i < n : since locations are on the half-line and delivery 

is instantaneous, if there were multiple orders released simulta- 

neously, we need only consider the order furthest away from the 

depot (the rest of orders can always be delivered on time within 

the outbound journey of a feasible route to the furthest location). 

The primary feasibility problem we study in this paper is a sin- 

gle vehicle problem defined as follows: 

Problem 1. Is there a sequence of delivery routes that can be ex- 

ecuted by a single driver, each starting and ending at the depot, 

such that each order i ∈ N is dispatched at or after r i and delivered 

at or before r i + S, and the last route is completed at or before T ? 

If customers i 1 , i 2 , . . . , i k are served in delivery route K , then the 

earliest dispatch time of the route, r ( K ), is max { r i 1 , r i 2 , . . . , r i k } , the 

latest dispatch time of the route, l ( K ), is min { l i 1 , l i 2 , . . . , l i k } , and the 

furthest order visited on the route, τ ( K ), is max { τi 1 
, τi 2 

, . . . , τi k 
} (for 

convenience, the empty route has r(∅ ) = 0 , τ (∅ ) = 0 , l(∅ ) = T ). Let 

the completion time of K , denoted by c ( K ), be the time that the 

driver is back at the depot after serving orders in K . Observe that 

r ( K ) ≤ l ( K ) is necessary for feasibility, and that if the driver is at 

the depot at time r ( K ), there is no reason to delay the dispatch of 

the route. 

Before proceeding with the analysis of the problem, we intro- 

duce the notion of non-interlacing routes and delivery schedules 

that contain only non-interlacing routes. Let a route K be an or- 

dered set of customers visited on a single dispatch from the depot. 

Definition 1. Two routes K 1 and K 2 with min { i | i ∈ K 1 } < min { j | j 

∈ K 2 } are non-interlacing if and only if max { r i | i ∈ K 1 } < min { r j | j 

∈ K 2 }. 

Note that two routes serving a single customer each are always 

non-interlacing. In other words, any pair of interlacing routes in- 

volves at least three customers. 

Definition 2. A delivery schedule S of non-interlacing routes is a 

partition of N that can be characterized by the set of last customers 

in each route, i.e., S = { i 1 , i 2 , . . . , i k , n } with 1 ≤ i 1 ≤ i 2 ≤ · · · ≤ i k ≤
n, indicating that orders { 1 , . . . , i 1 } are delivered on the first route, 

orders { i 1 + 1 , . . . , i 2 } are delivered on the second route, etc. 

3. Structural properties of feasible and optimal delivery 

schedules 

We now discuss key properties of feasible and optimal deliv- 

ery schedules. First, observe that if K 1 and K 2 are non-interlacing 

routes with r ( K 1 ) < r ( K 2 ), i.e., K 1 can be dispatched before K 2 , then 

if K 1 and K 2 appear consecutively in an optimal delivery sched- 

ule, K 1 will be dispatched before K 2 . Next, consider the following 

proposition which shows that we can limit our attention to de- 

livery schedules for Problem 1 that contain only non-interlacing 

routes. 

Proposition 1. Any feasible delivery schedule for a single driver can 

be transformed into a feasible delivery schedule with non-interlacing 

routes, and no increase in total travel time. 

Proof. Suppose a feasible schedule contains interlacing routes K 1 

⊇ { i , k } and K 2 ⊇ { j }, where r i < r j < r k . Without loss of general- 

ity, suppose that ( i , j , k ) constitutes the earliest such order triplet, 

or, more precisely, suppose that ( i , j , k ) is the lexicographic min- 

imum among the set of order triplets defining interlacing routes. 

This implies that i is the first order released in K 1 , j is the first or- 

der released in K 2 , and k is the first order in K 1 released after any 

order in K 2 . Now consider the following cases: 

1. Suppose K 1 is dispatched before K 2 , which implies that 

c ( K 1 ) < c ( K 2 ). 
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