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a  b  s  t  r  a  c  t

Objective:  Determine  how  varying  longitudinal  historical  training  data  can  impact  prediction  of  future
clinical  decisions.  Estimate  the  “decay  rate”  of clinical  data  source  relevance.
Materials  and  methods:  We  trained  a  clinical  order  recommender  system,  analogous  to  Netflix  or  Amazon’s
“Customers  who  bought  A  also  bought  B...”  product  recommenders,  based  on  a tertiary  academic  hospital’s
structured  electronic  health  record  data. We  used  this  system  to  predict  future  (2013)  admission  orders
based  on  different  subsets  of  historical  training  data  (2009  through  2012),  relative  to existing  human-
authored  order  sets.
Results:  Predicting  future  (2013)  inpatient  orders  is more  accurate  with  models  trained  on  just  one  month
of recent  (2012)  data  than  with  12 months  of older  (2009) data  (ROC  AUC  0.91  vs.  0.88,  precision  27%  vs.
22%,  recall  52%  vs. 43%, all P < 10−10).  Algorithmically  learned  models  from  even  the  older  (2009)  data  was
still  more  effective  than  existing  human-authored  order  sets  (ROC  AUC  0.81,  precision  16%  recall  35%).
Training  with  more  longitudinal  data  (2009–2012)  was  no  better  than  using  only  the  most  recent  (2012)
data,  unless  applying  a decaying  weighting  scheme  with  a “half-life”  of  data  relevance  about  4  months.
Discussion:  Clinical  practice  patterns  (automatically)  learned  from  electronic  health  record  data  can
vary  substantially  across  years.  Gold  standards  for  clinical  decision  support  are  elusive moving  targets,
reinforcing  the need  for  automated  methods  that  can  adapt  to evolving  information.
Conclusions  and relevancm:  Prioritizing  small  amounts  of  recent  data  is  more  effective  than  using larger
amounts  of  older  data  towards  future  clinical  predictions.

©  2017  The  Authors.  Published  by Elsevier  Ireland  Ltd.  This  is an open  access  article  under  the CC
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Background and significance

Variability and uncertainty in medical practice compromise
quality of care and cost efficiency, with overall compliance with
evidence-based guidelines ranging from 20 to 80% [1]. Even after
current reforms [2], evidence-based medicine from randomized
controlled trials cannot keep pace with the perpetually expanding
breadth of clinical questions, with only ∼11% of guideline recom-
mendations backed by high quality evidence [3]. Clinicians are
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left to synthesize vast streams of information for each individual
patient in the context of a medical knowledge base that is both
incomplete and yet progressively expanding beyond the cognitive
capacity of any individual [4,5]. The practice of medicine is thus
routinely driven by individual expert opinion and anecdotal expe-
rience.

Clinical decision support (CDS) seeks to reinforce best-practices
by distributing knowledge-based content through order sets, alerts,
templates, and prognosis scoring systems [6–10]. Here we pay spe-
cial attention to clinical orders (e.g., labs, imaging, medications) as
the concrete manifestation of point-of-care decision making. Com-
puterized provider order entry (CPOE) [11] typically occurs on an
“a la carte” basis where clinicians search for and enter orders to
trigger subsequent clinical actions (e.g., pharmacy dispensing and
nurse administration of a medication, or phlebotomy collection and
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laboratory analysis of blood tests). Because clinician memory and
intuition can be error-prone, health systems produce order set tem-
plates as a common mechanism to distribute standard practices
and knowledge (in paper and electronic forms) as the current stan-
dard for executable clinical decision support. Clinicians can search
by keyword for common scenarios (e.g.; “pneumonia”); and hope
they find a preconstructed order set that includes relevant orders
(e.g.; blood cultures; antibiotics; chest X-rays) [12–14].

While existing approaches to clinical decision support can
already reinforce consistency with best-practices [6,7,15–18], pro-
duction of this content is limited in scale by the human-expert,
knowledge-based authoring necessary for each intervention [19].
If medical knowledge were static, such manual approaches might
eventually converge towards a comprehensive set of effective clin-
ical decision support content from the top-down. The reality is
instead a perpetually evolving practice of medicine that responds to
new evidence, technology, epidemiology, and culture that requires
ongoing content maintenance to adapt to changing clinical prac-
tices [20–22].

The meaningful use era of electronic health records (EHR) [23]
creates an opportunity for data-driven clinical decision support
(CDS) to reduce detrimental practice variability with the collec-
tive expertise of many practitioners in a learning health system
[24–28]. Specifically, one of the “grand challenges” in clinical
decision support is data-mining content from the bottom-up in
clinical data sources [29]. Such algorithmic approaches to clinical
information retrieval could greatly expand the scope of medicine
addressed with effective decision support, and automatically adapt
to an ongoing stream of evolving practice data. This would fulfill
the vision of a health system that continuously learns from real-
world practices and translates them into usable information for
implementation back at the point-of-care. Prior research into data-
mining for decision support content includes association rules,
Bayesian networks, and unsupervised clustering of clinical orders
and diagnoses [30–37]. In our own prior work, inspired by analo-
gous information retrieval problems in collaborative filtering and
market basket analysis, we produced a clinical order recommender
system [38,39] analogous to Netflix or Amazon.com’s “Customer’s
who bought A also bought B” system [40].

Accumulating data in EHRs makes these concepts possible, but
the dynamic nature of clinical practices over time challenges the
presumption that learning from historical clinical data will inform
current and future clinical practices. Prior work already demon-
strates the importance of temporal patterns between clinical events
towards outcome predictions [39,41–43]. Another important rela-
tionship is the separation between when data is generated relative
to the time learned prediction models are applied and evaluated.
Prior clinical prediction modules from mortality risk scores like
APACHE and SAPS [44] to hospital readmissions models that risk
adjust quality indicators [45] to modern systems based on elec-
tronic medical record data [10,46,47] all tend to evaluate their
utility by assessing prediction accuracy on a (randomly) separated
validation subset of the same data source. This is not representative
of a realistic applied scenario where we must make recommen-
dations and predictions towards future events that have not yet
occurred [48].

1.2. Objective

To determine how varying longitudinal historical training data
usage can impact prediction of future clinical decisions. Determine
which inpatient admission diagnoses exhibit the most stability
vs. variability of clinical practice patterns over time. Estimate the
“decay rate” of the relevance of clinical data sources for informing
future predictions.

Table 1
Example non-zero counts per ICD9 admission diagnosis from 2008 to 2014. Noise
(extra counts) have been added to avoid potentially identifying data bins with counts
<10.  Detailed five digit ICD9 codes often lead to sparse elements, such as only a
handful of admissions coded as 787.24. To compress the hierarchy, instances of five
digit codes (e.g., 787.24) were also counted as the respective four digit code (e.g.,
787.2), which were in turn also counted as the three digit code (e.g., 787). Thus,
the aggregated 787.2 admission diagnosis code accounts for direct codes for 787.2,
as  well as all instances of 787.2x sub-codes. Likewise, the 787 admission diagnosis
code accounts for all 787.x and 787.xx sub-codes.

Raw
Count

Aggregate
Count

ICD9 Description

0 1934 787 Symptoms involving digestive system
0  1111 787.0 Nausea and vomiting
872 872 787.01 Nausea with vomiting
100 100 787.02 Nausea alone
125  125 787.03 Vomiting alone
14  14 787.04 Bilious emesis
0  259 787.2 Dysphagia
215 215 787.20 Dysphagia, unspecified
13  13 787.22 Dysphagia, oropharyngeal phase
11  11 787.24 Dysphagia, pharyngoesophageal phase
20  20 787.29 Other dysphagia
83 83 787.3 Flatulence, eructation, and gas pain
3  17 787.6 Incontinence of feces
14 14 787.60 Full incontinence of feces
0 464 787.9 Other symptoms involving digestive

system
450 450 787.91 Diarrhea
14 14 787.99 Other symptoms involving digestive

system

2. Materials and methods

2.1. Collaborative filtering for clinical order decision making

We  extracted deidentified patient data from the (Epic) elec-
tronic medical record for all inpatient hospitalizations at Stanford
University Hospital via the STRIDE clinical data warehouse [49]. The
structured data covers patient encounters from their initial (emer-
gency room) presentation until hospital discharge. With five years
of data spanning 2008–2014, the dataset includes >74 K patients
with >55 M instances of >45 K distinct clinical items. The clini-
cal item elements include >10,000 medication, >1600 laboratory,
>1200 imaging, and >1000 nursing orders. Non-order items include
>7000 lab results, >7800 problem list entries, >5300 admission
diagnosis ICD9 codes, and patient demographics. Medication data
was normalized with RxNorm mappings[50] down to active ingre-
dients and routes of administration. Numerical lab results were
binned into categories based on “abnormal” flags established by
the clinical laboratory, or being outside two  standard deviations
from the population mean. We  aggregated ICD9 codes up to the
three digit hierarchy as in Table 1. This helps compress the spar-
sity of diagnosis categories, while retaining the original detailed
codes if they are sufficiently prevalent to be useful. The above pre-
processing models each patient as a timeline of clinical item event
instances, with each instance mapping a clinical item to a patient
at a discrete time point.

With the clinical item instances following the “80/20 rule” of a
power law distribution [51], most item types may be ignored with
minimal information loss. In this case, ignoring rare clinical items
with <256 instances reduces the effective item count from >45 K to
∼4.6 K (10%), while still capturing 54.5 M (98%) of the 55.4 M item
instances. After excluding common process orders (e.g., vital signs,
notify MD,  regular diet, transport patient, as well as most nursing
and all PRN medications), 2030 clinical orders remain.

Using our previously described method [38,39,52], we algorith-
mically mined temporal association rules for clinical item pairs
from past clinician behavior. Based on Amazon’s product rec-
ommender [40], we collected patient counts for all clinical item
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