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A B S T R A C T

Field ion microscopy (FIM) allows to image individual surface atoms by exploiting the effect of an intense
electric field. Widespread use of atomic resolution imaging by FIM has been hampered by a lack of efficient
image processing/data extraction tools. Recent advances in imaging and data mining techniques have renewed
the interest in using FIM in conjunction with automated detection of atoms and lattice defects for materials
characterization. After a brief overview of existing routines, we review the use of machine learning (ML) ap-
proaches for data extraction with the aim to catalyze new data-driven insights into high electrical field physics.
Apart from exploring various supervised and unsupervised ML algorithms in this context, we also employ ad-
vanced image processing routines for data extraction from large sets of FIM images. The outcomes and limita-
tions of such routines are discussed, and we conclude with the possible application of energy minimization
schemes to the extracted point clouds as a way of improving the spatial resolution of FIM.

1. Introduction

Field ion microscopy (FIM), invented in 1951 by Erwin Müller [1,
2], is a high electric field technique which uniquely enables imaging of
surfaces with atomic resolution. FIM is based on ionization of an ima-
ging gas in the vicinity of a field-emitter tip as a consequence of the
locally high electric field. The high electric field is achieved by applying
a high voltage of a few kilovolts onto a very sharp needle-shaped spe-
cimen maintained at a temperature usually below 80 K. Specimens are
either electropolished [3] or milled with a focused ion beam (FIB) [4]
into a very sharp needle tip with an end radius below 100 nm. The
advantage of using FIB for specimen preparation lies in its site specific
application for extracting tips in microstructure regions of high interest
such as across internal interfaces. An excellent review on using FIB for
site specific specimen preparation can be found in reference [4].

Once the specimen is mounted an imaging gas is introduced. The
introduced imaging gas gets attracted by the cold surface due to po-
larization forces. The gas atoms then thermally accommodate with the
cold tip surface by performing a series of “ hops”. Surrounding the tip
surface there exists a critical zone, where the maximum ionization oc-
curs. This surface usually lies around 1–4 Å above the tip [5]. During
the “ hops”, the ionization probability for the gas atoms can be con-
siderable as they spend a significant amount of time in the critical
surface. As a consequence an electron can tunnel from the imaging gas

atom into the tip. The ionized gas atom is accelerated away from the
positively biased tip and towards the detector, where gas ions con-
tribute to image formation.

The surface is the intersection of the crystalline lattice with the
imposed end shape, often approximated as nearly-spherical. Owing to
the discreteness of the atomic arrangement at these scales the tip apex
curvature is, in reality, made of atomic scale crystallographic terrace
features where some of the top, edge and corner atoms are naturally
protruding, producing local electrostatic field enhancement. This means
that these exposed atomic terrace positions are sites of magnified
electrostatic field strength and also of aberrated field direction. The
amount of gas atoms ionizing depends on such a local enhancement of
the electric field. This variation in electric field strength across the
surface atoms gives the final contrast in the FIM image. The contrast in
FIM also depends on the gas supply function and adsorption behavior
[6-8]. Atomic resolution can be attained in some cases on certain high
index facets where the surface field distribution is corrugated enough to
give contrast in the image. By collecting the gas ions on a phosphor
screen, an image is formed that reveals the distribution of the electro-
static field near the surface and the current created by the number of
incoming imaging gas ions.

Historically, images were collected on a film in a dark room after
sufficient exposure on the screen was achieved by field ionization [1].
Eventually, field ion microscopes were fitted with a stack of micro-
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channel plates (MCP) in-front of the phosphor screen. The image on the
phosphor screen can be recorded with a high-resolution high-frame-rate
camera. The MCPs act as a photo multiplier by creating an electron
cascade in response to the gas ion impact. Another variant of FIM is
referred to as eFIM™, which is performed on a local electrode atom
probe (LEAP) [9] using the delay-line detector used in the atom probe
mode.

The atomic resolution of FIM made it a popular technique for
studying internal interfaces [10-12] and dislocations [13-15] at un-
precedented atomic positioning resolution. When exposing the tip not
only to the minimum field strength required for ionizing the imaging
gas but also for evaporating the tip atoms themselves continually, the
method is rendered depth sensitive. This means that the specimen can
be investigated tomographically along the tip longitudinal axis, which
has led to the development of 3DFIM [16]. The emergence of atom
probe tomography (APT), which is additionally able to characterize the
chemical identity of the imaged atoms, has led to some decline in the
usage of the FIM technique by the materials science community.
Nevertheless 3DFIM offers the important advantage over APT of a
significantly higher spatial resolution with 100% positional detection
efficiency in 3 dimensions in some cases. This high degree of positional
accuracy allows characterization even down to single point defects in a
material, a feature not offered by any other technique. This causes
currently an increased interest in the 3DFIM technique.

Ultimately, owing to all the advances in detector technology, 3DFIM
is capable of producing large and accurate tomographic datasets con-
taining information on sequential atomic positions. These large datasets
lead to a new tremendous challenge of how to manage the data.
Presently, there is a lack of efficient data handling and data treatment
algorithms to extract pertinent information from these datasets in an (a)
automated; (b) fast; (c) user-independent; (d) and error quantified
manner. For instance, characterization of a volume of 0.001 μm3(a ty-
pical sample size analyzed in 3DFIM) produces in the range of 2×105

images (assuming a constant field evaporation rate and capture speed).
Hence, there is a great need for efficient algorithms and data mining
routines to fully exploit the potential of 3DFIM. To this end, M. Dagan
et al. [17] have proposed an atom by atom data extraction routine for
reconstructing 3DFIM data. Building on their work we recently pro-
posed a new method to extract atomic positions from 3DFIM data-
sets [18]. With this article, we focus our attention on using various
modern image processing and machine learning algorithms for ex-
tracting information from 3DFIM.

The developments in Artificial Intelligence (AI), especially in com-
puter vision have been explosive. Modern machine learning algorithms
enable a fully automated detection and classification of objects in a
picture. We give an overview about these advanced data mining tools
and how they can be utilized to extract the wealth of information from
3DFIM images. We have implemented some of these concepts within a
set of routines in Python™ (Python Software Foundation; Python
Language Reference, version 2.7; Available at http://www.python.org)
employing the SciPy package [19]. These routines allow us to extract
the relevant information from a large number (order of several 10,
000 s) of FIM images in very short computational times (order of
minutes).

2. Existing Data Extraction Routines for 3D Field Ion Microscopy

A 3DFIM experiment produces a series of images of the continually
field evaporating surface. A main challenge lies not in acquiring such
large datasets but rather in analyzing them. The article by Vurpillot
et al. [20] serves as an excellent review for the current state-of-the-art
and the main issues associated with data extraction from large FIM
datasets. We briefly review here the available analysis methods and also
some recent developments. Broadly speaking the analysis methods can
be categorized into an atom by atom approach and a geometrical ap-
proach.

The first approach towards advanced 3DFIM analysis was already
developed in the early 70s for characterizing radiation damage in me-
tals at the atomic scale [21, 22]. In these early approaches FIM images
were captured on film which later were developed and manually ana-
lyzed individually. The captured FIM images were dissected atom-by-
atom and the positions of atoms and defects were marked manually.
Owing to the associated cumbersome analysis methods, systematic FIM
studies of more complex atomic scenarios remained an exception.
Taking the additional disadvantage of 3DFIM of being insensitive to the
chemical nature, APT became gradually the more dominant technique.
Yet, FIM's ability to characterize atomistic defects such as vacancies in
three dimensions is still unparalleled with any other technique. In this
context the drastic increase in computing power became an essential
asset when Dagan et al. developed an automated method to reconstruct
3DFIM data atom by atom [20, 23]. The algorithm takes advantage of
layer by layer evaporation and the atoms are identified based on a
threshold intensity. The final coordinates are converted to real space
based on theoretical nearest neighbor distances. This work led to a rise
in interest around the physics of image formation in FIM and also in the
use of the associated computationally enhanced analysis techniques.

The geometrical approach to 3DFIM atomic position reconstruction
introduced by Vurpillot et al. consists in stacking the digital images
obtained from a 3DFIM experiment [16]. The image stack is then cor-
rected, assuming a known projection law, a specimen's geometry and a
constant evaporation rate. The stacking approach does not provide
atomistic precision but is rather used for investigation of segregation,
clustering and fine scale precipitation studies [24-28]. This method can
also be used to identify crystallographic planes and dislocations which
are hard to spot in a 2DFIM image.

Both the atom by atom reconstruction approach and the geometrical
method suffer from their own limitations. For instance, the atom-by-
atom approach is limited to regions with atomic resolution, and thus a
3D reconstruction is only possible around certain high index facets. The
geometrical approach looses the atomic positioning precision due to the
simplistic geometrical assumptions of the tip shape. In the following
sections we showcase how various data extraction methods can be
employed to further improve the atom-by-atom analysis approach and
recover as much positioning information as possible. In addition, the
use of machine learning algorithms to extract the physics behind field
ionization and evaporation is also explored.

3. Supervised and Unsupervised Machine Learning

Machine learning (ML) algorithms are currently exploited to derive
systematic insights from very rich experimental datasets and for solving
complex problems in various disciplines [29]. Progress in ML has led to
decision rules that can in some cases be automatically derived by spe-
cific algorithms that are capable of learning, whilst exploiting the speed
and the robustness of the available advanced computer infrastructure.

Machine-learning methods can be grouped into two major cate-
gories depending on the approach to a given problem viz. supervised
and unsupervised learning [30]. Supervised learning algorithms try to
identify the relationship between input and output. This dependency is
learned as a function f(x) by using a set of labeled data {X=[ai,bi] ,
i=1,…,N} consisting of N pairs (a1,b1), (a2,b2) , ... , (aN,bN), where the
input variables ai are D-dimensional vectors ai ∈ RD and the output
variables (or system responses) bi are discrete values (e.g., Boolean) for
classification problems and continuous values (b ∈ R) for regression
tasks. Support Vector Machines (SVMs) and Artificial Neural Networks
(ANN) are widely used techniques that fall in this category. Typical
tasks that can currently routinely be carried out by a supervised ma-
chine learning algorithm are image segmentation and classification. In
the computer vision community, semantic segmentation, which is an
extremely challenging task, aims to partition the image into semanti-
cally meaningful parts (such as differentiating a cat, a car or Einstein in
the same image), and to classify each part into one of the predetermined
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