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A B S T R A C T

In this research, we study a single-component system that is characterized by three distinct deterioration states,
cf. the Delay Time Model: normal, defective, and failed. The system is inspected periodically, and preventive
system maintenance is done after a given number of inspections. The inspections are imperfect, and the
probability of an inspection error changes over the system's operation time. Our objective is to minimize the
average cost over an infinite time horizon. We present exact cost evaluations for a given maintenance policy, and
we compare our model with non-constant probabilities to a model that considers constant probabilities of
inspection errors. Our computational study illustrates that the model with constant probabilities may yield, on
average, 19% higher costs than the model using non-constant probabilities of inspection errors. These values
depend on the chosen parameter values, but still give an indication of how large the difference between both
models can be. Finally, we also present an extension in which a reliability constraint (in terms of average failures
per time unit) is added to our problem.

1. Introduction

Unexpected failures cause costly downtime for many advanced
technical systems, such as airplanes, trains, baggage handling systems,
and medical systems. Maintenance is done during system operation to
avoid such unexpected failures. The costs of these maintenance
activities comprise 15–60% of the total production costs in a manufac-
turer's facility [11]. In such situations, it is important to minimize the
maintenance costs. Mathematical maintenance models and techniques
are typically used to support this objective by deriving optimal
maintenance policies.

The literature on maintenance optimization is rich and covers
various areas such as system replacement, inspections, repair, and
maintenance scheduling [7]. These areas of maintenance optimization
use modeling techniques that describe system degradation. There
exists a large variety of models describing system degradation differ-
ently, e.g. continuous degradation or discrete state degradation. Many
of these models have in common that they also consider inspections
that reveal the system's level of degradation. For instance, Whitmore
[22], and Newby and Dagg [12] model the continuous degradation by a
Wiener process and assume imperfect inspections that may contain
noise. In other work, Kallen and van Noortwijk [9] propose to model
system degradation by a Gamma process, and they also assume

inspections with noise. On the other hand, system degradation is also
modeled in terms of discrete states, contrary to continuous degrada-
tion. Some researchers have proposed multi-state Markovian degrada-
tion models that include imperfect inspections, see for example Welte
[21], and Le and Tan [10].

Another common approach to modeling system degradation in
terms of discrete states is the Delay Time Model (DTM). This model
distinguishes three deterioration states: normal, defective, and failed.
The system operates properly in the normal state; operates in the
defective state as well, but its defect can be revealed by inspections; or
the system has failed. The time the system spends in the normal and
defective state are called the time to defect and the delay time,
respectively. Analogous to other maintenance models in literature,
the DTM is typically studied under inspection based maintenance
policies; i.e., inspections are done to reveal the system's degradation. A
literature overview of the DTM up to 1999 is provided by Christer [4],
and Wang [19] reviews the research from 1999 to 2012. The most
recent advancements, since 2012, include postponements of mainte-
nance actions when the defects are detected [17], and the combination
of multiple different forms of preventive maintenance activities – such
as routine service, preventive system maintenance, and inspections –

based on the DTM [20].
The DTM literature considering inspection policies generally as-
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sumes that the inspections are perfect. However, inspections are
usually not perfect in practice due to errors, such as human errors or
errors of measurement equipment [23]. Therefore, imperfect inspec-
tions have been included in single-component DTMs by Okumura et al.
[14] and Berrade et al. [3]. Both works consider two types of imperfect
inspection behavior, i.e., false positives and false negatives. A false
positive corresponds to the judgment that a system is in its defective
state, when it is actually in its normal state. False negatives correspond
to the judgment that a system is in its normal state when, in fact, the
system is in its defective state. We refer to the probabilities of false
positives and false negatives by α and β, respectively. For an overview,
Table 1 is included.

The probabilities of false positives and false negatives, α and β, are
assumed to be constant over time by Okumura et al. [14] and Berrade
et al. [3]. However, this approach might be inaccurate. Maintenance
engineers may become more tempted to engage in a false positive when
the system has been operating (in its normal state) for a longer period
of time. That is, they use their own judgement of the time the system
has been operating normally instead of the actual inspection outcome.
Such behavior implies that the probability of false positives is non-
constant, and depends on the time the system has been operating in the
normal state. This approach to false positives has not been explored in
the DTM literature, nor in any of the other maintenance models.
Therefore, our work extends the literature by proposing a non-constant
probability of false positives for a single-component DTM.
Furthermore, maintenance engineers may encounter difficulties in
determining whether a system has become defective at early stages of
system degradation, e.g. smaller cracks are more difficult to find than
larger ones [5]. Therefore, the probability of false negatives is non-
constant and depends on the system degradation. We extend the
literature by relating this probability of false negatives to the system's
duration in the defective state relative to its delay time, which is a
measure of system degradation. By this way of modeling the probability
of false negatives, we provide a richer concept of system degradation
compared to Wang [18], who conceptualizes system degradation by
only considering the duration that a system has been defective. Let us
illustrate the enhanced richness of our concept by means of an
example. Weaker materials typically have a lower delay time compared
to stronger materials. Hence, under the same duration in the defective
state, the weaker material (shorter delay time) will have a higher level
of degradation than the strong one. Table 2 presents a schematic
literature overview of DTMs with imperfect inspections.

In this research, we propose a single-component model that
considers non-constant probabilities of false positives and false nega-

tives, and we will refer to this model as the true model. Next to the true
model, we also study the approximate model, which is a single-
component model that considers constant probabilities of false posi-
tives and false negatives. This approximate model is typically easier to
use and to implement due to the constant probabilities. Furthermore,
the approximate model will serve as a comparison to the true model in
this paper. This enables us to shed some light on the benefit of
modeling non-constant probabilities of imperfect inspections over
modeling the probabilities as constants. Our objective is to minimize
the average cost per time unit over an infinite time horizon by
optimizing the maintenance policy. Our research's contributions are
twofold: (1) we present an exact cost evaluation of our true model; and
(2) we compare our true model to the approximate model. We show
that the approximate model may result in policies that yield – on
average – 19% higher cost than the true model. This implies that the
reduction in model complexity comes at an average cost increase of
19%, based on our instances tested. We would like to emphasize that
these numbers depend on the parameter settings, but they still give an
indication of the extent that the two models may differ.

The remainder of this paper is organized as follows. In Section 2, we
present the model. In Section 3, we give an exact cost evaluation for our
maintenance policy, and we discuss the optimization procedure. In
Section 4, we present a method for comparing the true and approx-
imate model, and we present the computational results that compare
both models in Section 5. We present an extension including a
reliability constraint in Section 6, and we conclude our work in
Section 7.

2. Model description

In this section, we describe our true model. However, the descrip-
tion and the reasoning also applies to the approximate model. The sole
difference is that, in the latter case, the probabilities of false positives
and false negatives are assumed to be constants.

Let us consider a single-component system operating over an
infinite time horizon. The system has three states: normal, defective
and failed. In the normal operating state, the system is working
properly, without any detectable defects. In the defective state, inspec-
tions may reveal the system's defect. Yet, the system is still able to
operate. The failed state of the system is self-announcing, and the
system stops delivering its function immediately. If the system fails, it
is replaced correctively. To prevent the system from reaching its failed
state, it is inspected periodically each T > 0 time units, it is preventively
replaced upon detection of the defective state, or it is preventively
replaced after M − 1 inspections at time MT. This implies that at time
MT we do not perform another inspection, as the system is preventively
replaced independent on its state, i.e., the Mth inspection is unneces-
sary. For more details on such a policy, see Scarf et al. [16]. We denote
our maintenance policy by (M,T), and note that it degenerates to an
age-based maintenance policy when M=1, it reduces to a pure
inspection policy when M = ∞, and it is a hybrid policy for any finite
M > 1. We assume that inspections are the only means to detect the
normal and defective state.

We denote the duration of the time that the system is in the normal
state, referred to as the time to defect, by the continuous random
variable X > 0. This time to defect corresponds to the time between
maintenance (preventive or corrective), and the arrival time of the
defect. The random time the system takes from defect arrival to failure,
without doing any maintenance, is referred to as the delay time and
denoted by the continuous random variable H > 0. The sum of both
random variables is the system's time to failure. The cumulative
distribution function (cdf) and the probability density function (pdf),
corresponding to both state durations, are defined by F (·)X and f (·)X for
the time to defect, and by F (·)H and f (·)H for the delay time,
respectively.

The cost for performing an inspection is denoted by ci, and the cost

Table 1
Probabilities of inspection behavior.

System state

Normal Defective
Inspection outcome Normal 1−α β

Defective α 1−β

Table 2
Imperfect inspections in the DTM literature.

False positives

Constant Non-constant

False negatives
Constant

Okumura et al. [14];

Berrade et al. [3]

Non-constant Wang [18] This research
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