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a b s t r a c t

Centrifugal compressors are widely used for gas lift, re-injection and transport in the oil and gas industry. Critical
compressors that compress flammable gases and operate at high speeds are prioritized on maintenance lists
to minimize safety risks and operational downtime hazards. Identifying incipient faults and predicting fault
evolution for centrifugal compressors could improve plant safety and efficiency and reduce maintenance and
operation costs. This study proposes a dynamic process monitoring method based on canonical variable analysis
(CVA) and long short-term memory (LSTM). CVA was used to perform fault detection and identification based
on the abnormalities in the canonical state and the residual space. In addition, CVA combined with LSTM was
used to estimate the behavior of a system after the occurrence of a fault using data captured from the early
stages of deterioration. The approach was evaluated using process data obtained from an operational industrial
centrifugal compressor. The results show that the proposed method can effectively detect process abnormalities
and perform multi-step-ahead prediction of the system’s behavior after the appearance of a fault.

© 2017 Published by Elsevier Ltd.

1. Introduction

Modern industrial natural gas processing plants are becoming in-
creasingly complex due to the use of diverse equipment. Because of
their complexity, developing an accurate first-principle failure model
for such large-scale industrial facilities can be challenging (He, Li,
& Bechhoefer, 2012). Thus, existing condition monitoring approaches
for industrial processes are typically derived from routinely collected
system operating data. Due to the rapid growth and advancement in
data acquisition technology, long-term continuous measurements can be
taken with sensors mounted on machinery systems. The monitored data
are easily stored and analyzed to extract important process condition
information.

A number of advanced multivariate statistical techniques have been
developed based on condition monitoring data for diagnostic and
prognostic health monitoring, such as filtering-based models (Guerra
& Kolodziej, 2017), multivariate time-series models (Serdio, Lughofer,
Pichler, Buchegger, & Pichler, 2014) and neural networks (Tran, Al-
thobiani, & Ball, 2014). Key challenges in the implementation of
these techniques include strongly correlated variables, high-dimensional
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data, changing operating conditions and inherent system uncertainty
(Jiang, Huang, Zhu, Yang, & Braatz, 2015). Recent developments in
dimensionality reduction techniques have shown improvements in iden-
tifying faults from highly correlated process variables. Conventional
dimensionality reduction methods include principal component analysis
(PCA) (Harrou, Nounou, Nounou, & Madakyaru, 2013), independent
component analysis (ICA) (Hyvärinen, Karhunen, & Oja, 2004) and
partial least-squares analysis (PLSA) (Kruger & Dimitriadis, 2008).
These basic multivariate methods perform well under the assumption
that process variables are time independent. However, this assumption
might not hold true for real industrial processes (especially chemical
and petrochemical processes) because sensory signals affected by noise
and disturbances often show strong correlations between the past and
future sampling points (Jiang et al., 2015). Therefore, variants of the
standard multivariate approaches (Li & Qin, 2001; Stefatos & Hamza,
2010; Yin, Zhu, Member, & Kaynak, 2015) were developed to solve
the time-independency problem, which makes these approaches more
suitable for dynamic process monitoring. In addition to approaches
derived from PCA, ICA and PLSA, canonical variable analysis (CVA)
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is a multivariate analysis tool. CVA is a subspace method that takes
serial correlations between different variables into account and hence
is particularly suitable for dynamic process modeling (Stubbs, Zhang, &
Morris, 2012). The effectiveness of CVA has been verified by extensive
simulation studies (Huang, Cao, Tian, & Deng, 2015; Stubbs et al., 2012)
and data captured from experimental test rigs (Cárcel, Cao, & Mba,
2007). However, the effectiveness of CVA in real complex industrial
processes has not been fully studied. In the present study, condition
monitoring data acquired from an operational industrial centrifugal
compressor were used to prove the superior performance of CVA for
fault detection and identification in industrial processes.

Once a fault is detected in industrial processes, a prognostic tool is
required to predict how the system will behave under faulty operating
conditions. Examples of successful applications of different methodolo-
gies for performance estimation in the presence of faults are available
(Ai et al., 2009; Ai, Zheng, Wang, Jang, & Song, 2010; Zheng et al.,
2010). In addition to the abovementioned approaches, CVA is a subspace
identification method that can be used to build a dynamic model using
measurements of a system’s input and output signals. The obtained
model can be utilized to predict system performance given expected
future input conditions. System inputs used in subspace identification
are typically manipulated or controllable variables such as inlet liquid
and gas flow valve position. However, the performance of complex in-
dustrial systems, such as turbomachines, is not only associated with the
system’s input signals, which can be manipulated, but is also affected by
variations in environmental conditions such as the ambient temperature
(Campanari, 2000). The inlet gas temperature of the compressor in this
study is a prime example of how environmental conditions can affect a
system’s performance. Specifically, for the centrifugal compressor, the
temperature of the gas to be compressed is largely determined by the
ambient temperature when the gas passes through long transmission
pipelines to the compressor. As a result, the magnitude of the compres-
sor’s inlet gas temperature changes periodically, most commonly every
24 h. To account for the impact of ambient temperature on a system’s
performance, and thereby allow both the environmental factors and
the human interventions to be factored in when predicting the system’s
future behavior, a time series prediction method is required to forecast
the magnitude of the inlet gas temperature based on historical data.

Many data-driven methodologies are available for the prediction of
time series, including the widely applied support vector machine (SVM)
(Zhang, Wang, & Zhang, 2017), echo state network (ESN) (Chouikhi,
Ammar, Rokbani, & Alimi, 2017) and nonlinear auto-regressive moving
average (Wootton, Butcher, Kyriacou, Day, & Haycock, 2017) meth-
ods. One main challenge of sequence prediction tasks that involve
temporal dependencies is handling long-range dependencies (Bengio,
Simard, Frasconi, & Member, 1994). Long short-term memory (LSTM)
is a powerful learning model that has been extraordinary capable in
a wide range of machine learning tasks such as machine remaining
useful life prediction (Wu, Yuan, Dong, Lin, & Liu, 2017), visual object
recognition (Son, 2017) and speech recognition (Chen & Wang, 2016).
LSTM networks use special units in hidden layers that allows inputs to
be remembered for long periods; therefore they have great potential
in constructing end-to-end systems (Lecun, Bengio, & Hinton, 2015).
However, few studies have been conducted to predict sensory signals
collected from industrial processes. In this investigation, we explore the
ability of LSTM to model the compressor inlet temperature time series.
The predicted future inlet gas temperature along with the manipulated
system’s input signals were fed into a CVA model to perform machine
behavior estimation.

The major contributions of this paper are as follows:

∙ The use of CVA for fault detection using data captured from an
operational industrial centrifugal compressor;

∙ The combination of the canonical state space and the residual
space information for fault root-cause analysis;

∙ The application of LSTM to predict the inlet gas temperature of
the compressor in the study;

∙ The combination of CVA and LSTM for multi-step-ahead predic-
tion of the system’s behavior after the occurrence of a fault.

2. Methodology

2.1. CVA for fault detection and identification

CVA is a dimensionality reduction technique used to monitor ma-
chine operation by transferring high-dimensional process data into one-
dimensional health indicators. Condition monitoring data captured from
the system operating under healthy conditions are used to calculate the
threshold for normal operating limits. Abnormal operating conditions
can be detected when the value of the health indicator exceeds pre-set
limits.

The objective of CVA is to maximize the correlation between two
sets of variables (Russell, Chiang, & Braatz, 2000). To generate two
data matrices from the measured data 𝑦𝑡 ∈ 𝑛 (𝑛 indicates that there
are 𝑛 variables being recorded at each sampling time 𝑡), the data were
expanded at each sampling time by including 𝑎, the number of previous
samples, and 𝑏, the number of future samples, to construct the past and
future sample vectors 𝑦𝑎, 𝑡 ∈ 𝑛𝑎 and 𝑦𝑏,𝑡 ∈ 𝑛𝑏.
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To avoid excessive influence of variables with large absolute values,
the past and future sample vectors were normalized to zero mean vectors
�̂�𝑎,𝑡 and �̂�𝑏,𝑡, respectively. Then, the vectors �̂�𝑎,𝑡 and �̂�𝑏,𝑡 at different
sampling times were rearranged according to Eqs. (3) and (4) to produce
the reshaped matrices 𝑌𝑎 and 𝑌𝑏:

𝑌𝑎 = [�̂�𝑎,𝑡+1, �̂�𝑎,𝑡+2,… , �̂�𝑎,𝑡+𝑁 ] ∈ 𝑛𝑎×𝑁 (3)
𝑌𝑏 = [�̂�𝑏,𝑡+1, �̂�𝑏,𝑡+2,… , �̂�𝑏,𝑡+𝑁 ] ∈ 𝑛𝑏×𝑁 (4)

where 𝑁 = 𝑙 − 𝑎 − 𝑏 + 1 and 𝑙 represents the total number of samples
for 𝑦𝑡. The Cholesky decomposition was then applied to the past and
future matrices 𝑌𝑎 and 𝑌𝑏 to configure a Hankel matrix  (Samuel &
Cao, 2015). The purpose of using the Cholesky decomposition here is to
transfer 𝑌𝑎 and 𝑌𝑏 into a new correlation matrix with reduced dimen-
sionality such that the subsequent calculations can be conducted in a
stable and fast manner. To find the linear combination that maximizes
the correlation between the two sets of variables, the truncated Hankel
matrix  is then decomposed using the singular value decomposition
(SVD):
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where 𝛴𝑎,𝑎 and 𝛴𝑏,𝑏 are the sample covariance matrices and 𝛴𝑎,𝑏 denotes
the cross-covariance matrix of 𝑌𝑎 and 𝑌𝑏.

If the order of the truncated Hankel matrix  is 𝑟, then 𝑈 , 𝑉 and ∑
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