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a b s t r a c t 

Periodic replacement policies modeled with the history of minimal repairs have been studied extensively. How- 

ever, in the viewpoint of cost rate, there is no literature to compare replacement polices which are carried out 

at some periodic times and at a predetermined number of repairs. In this paper, we compare these two types of 

replacement policies analytically from the optimizations of the integrated models. It will be shown that there 

always exists a degradation model when any bivariate replacement policy is optimized and this is just the best 

choice of the comparisons. Not only that, the approaches of whichever occurs first and last are applied to model 

the above two types of policies, which are named as replacement first and replacement last, respectively, and 

their comparisons are also made. In addition, we delay the policy at repair to periodic time for easier replacement, 

and the modified replacement model, which is named as replacement overtime, is compared with the original 

ones. Numerical examples are also given and agree with all analytical discussions. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In order to be strong enough in production capacity, the total pro- 

ductive maintenance (TPM) has been indispensable in Japanese indus- 

try since 1970s, which involves an innovative concept of maintaining 

equipments by everyone in the organization [1,2] . TPM generally uses 

periodic and predictive maintenances to aim at maximizations of equip- 

ment utilization and production stability. Periodic maintenance [3] con- 

sists of periodically inspecting, cleaning and servicing equipment and 

replacing deteriorated parts to prevent serious breakdown and process 

problem, while predictive maintenance [4,5] is a method to operate the 

equipment to the limit of its service life, by measuring and analyzing 

data about deterioration at routine diagnosis and minor repairs. 

Normally, maintenances are more easily to be performed at periodic 

times in applications, e.g., a complete maintenance in TPM should be 

carried out on monthly holidays if the equipment must be stopped and 

a long time is required for maintenance [2] . Theoretical research works 

on periodic patterns in maintenance plans were studied extensively. Pe- 

riodical inspection intervals were optimized to detect soft failures of 

a complex repairable unit, while hard failures create opportunities for 

additional inspections of all soft-type components [6,7] . Maintenance 

policies with periodic inspections were observed for the systems with 
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several failures [8] and failure interactions [9] . Inspections are carried 

out periodically on the unit using the delay time concept during two 

failure state processes [10] . A k -out-of- n load-sharing unit that is pe- 

riodically inspected to detect failed components was studied [11] . An 

optimal number of periodic inspections and its maintenance level to 

minimize the expected total warranty cost for the second-hand product 

during the warranty period were derived [12] . 

In order to achieve just-in-time (JIT) principle in TPM [1,2] , repairs 

are included in maintenance schedules in response to all non breakdown 

deteriorations and resume quickly the operation of equipment after re- 

pairable failure. Not only that, the service life of important part can be 

predicted based on diagnosis at repairs for predictive maintenance deci- 

sions in TPM [3] . Repair models have been studied especially for large 

and complex systems, which consist of many kinds of units [13] . In re- 

cent works, models for repairable unit subjected to minimal repair [14] , 

imperfect repair considering time-dependent repair effectiveness [15] , 

age-based replacement with repair for shocks and degradation [16,17] , 

inspection modeling for repairs [18] , post-warranty maintenance with 

repair time threshold [19] , random working models with replacement 

and minimal repair [20,21] , etc., have been studied extensively. More 

recently, preventive maintenance should be planned jointly with the 

right type of repairs to achieve the best performance for a multi-state 
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unit has been studied [22] . A nonparametric estimation method for peri- 

odic replacement problem with minimal repairs has been proposed [23] . 

A case study of periodic maintenance policy under imperfect repair for 

off-road engines has been surveyed [24] . 

It has been well-known in reliability theory that the cost rate model 

for periodic replacement is formulated by using the cumulative haz- 

ard function H ( t ), where H ( t ) presents the expected number of failures 

during [0, t ] when the failure rate of a repairable unit remains undis- 

turbed by minimal repairs [25,26] . Recent periodic maintenance mod- 

els based on the history of failures/repairs can be found extensively in 

above literatures. However, in the viewpoint of cost rate, there is no 

study until now to compare replacement polices that are carried out at 

some periodic times and at a predetermined number of repairs, which 

becomes the main problem to be discussed in this paper. Furthermore, 

in order to achieve the target of maximizations of equipment utilization 

and production stability in TPM [3] , the approaches of modelings for re- 

placement first [26] , replacement last [27] , and replacement overtime 

[28,29] are used to formulate our replacement models, that is, three 

approaches of whichever triggering event occurs first, whichever triggering 

event occurs last , and replacing over a planned measure will be taken into 

considerations in replacement policies, respectively. It has been shown 

in [21,27–29] that replacement last and replacement overtime could let 

the equipment operate as long as possible, which will also be discussed 

and compared for the models in this paper. 

Our comparisons start from formulating the integrated models with 

two types of maintenances that are planned at periodic times and at 

repair numbers. Obviously, when the optimal maintenance policies are 

obtained in separative models, it will be very easy to compare them with 

numerical examples in viewpoint of cost rates. However, we compare 

these two types of maintenances analytically from the optimizations of 

the integrated models. It will be shown that there always exists a degra- 

dation model when any bivariate replacement policy is optimized and 

it is just the best choice of the comparison, which agrees with the com- 

parisons obtained in [21] . In addition, other comparative results among 

replacement policies are obtained analytically and numerically. 

2. List of assumptions 

In this section, the following assumptions for failure, minimal repair 

and replacement are given: 

i. Failures of an operating unit occur at a nonhomogeneous Poisson 

process with mean value function 𝐻( 𝑡 ) ≡ ∫ 𝑡 

0 ℎ ( 𝑢 )d 𝑢 . Let p j ( t ) and P j ( t ) 

be the respective probabilities of exact number j of failures and at 

least number j of failures occur in [0, t ], then 

𝑝 𝑗 ( 𝑡 ) = 

[ 𝐻( 𝑡 )] 𝑗 

𝑗! 
e − 𝐻( 𝑡 ) and 𝑃 𝑗 ( 𝑡 ) ≡

∞∑
𝑖 = 𝑗 

𝑝 𝑖 ( 𝑡 ) ( 𝑗 = 0 , 1 , 2 , ⋯ ) , 

where 𝑃 0 ( 𝑇 ) = 1 and 𝑃 𝑗 (∞) = 1 . 
ii. The unit undergoes minimal repairs at failure events, and begins 

to run again after repairs. It is also assumed that the failure rate 

h ( t ) remains undisturbed by minimal repairs, i.e., the unit after each 

minimal repair has the same failure rate as before failure. 

iii. A new unit is replaced at time 𝑁𝑇 ( 𝑁 = 1 , 2 , ⋯ ; 0 < 𝑇 < ∞) , at repair 

number 𝐾 ( 𝐾 = 1 , 2 , ⋯ ) , and at the next periodic time ( 𝑛 + 1) 𝑇 when 

a number 𝐾 ( 𝐾 = 1 , 2 , ⋯ ) of repairs have been done during [ 𝑛𝑇 , ( 𝑛 + 

1) 𝑇 ] . 
iv. The times for minimal repair and replacement are negligible, and let 

c R be the cost of replacement and c m 

be the cost of minimal repair 

at each failure, where c R ≥ c m 

. 

3. Replacement first 

3.1. Expected cost rate 

Suppose that the unit is replaced at a periodic time 𝑁𝑇 ( 𝑁 = 

1 , 2 , ⋯ ; 0 < 𝑇 < ∞) or at a repair number 𝐾 ( 𝐾 = 1 , 2 , ⋯ ) , whichever oc- 

curs first . Then, the probability that the unit is replaced at time NT is 

𝑃 𝐾 ( 𝑁𝑇 ) , and the probability that it is replaced at failure K is P K ( NT ). 

Denoting 𝑃 𝑗 ( 𝑡 ) ≡ 1 − 𝑃 𝑗 ( 𝑡 ) , and noting that 

𝑃 𝑗 ( 𝑇 ) = ∫
𝑇 

0 
𝑝 𝑗−1 ( 𝑡 ) ℎ ( 𝑡 )d 𝑡, 𝑃 𝑗 ( 𝑇 ) = ∫

∞

𝑇 

𝑝 𝑗−1 ( 𝑡 ) ℎ ( 𝑡 )d 𝑡, 

𝐾 ∑
𝑗=1 

𝑃 𝑗 ( 𝑇 ) = ∫
𝑇 

0 
𝑃 𝐾 ( 𝑡 ) ℎ ( 𝑡 )d 𝑡, 

𝐾 ∑
𝑗=1 

𝑃 𝑗 ( 𝑇 ) = ∫
∞

𝑇 

𝑃 𝐾 ( 𝑡 ) ℎ ( 𝑡 )d 𝑡, 

∞∑
𝑗= 𝐾 

𝑃 𝑗 ( 𝑇 ) = ∫
𝑇 

0 
𝑃 𝐾−1 ( 𝑡 ) ℎ ( 𝑡 )d 𝑡, 

∞∑
𝑗= 𝐾 

𝑃 𝑗 ( 𝑇 ) = ∫
∞

𝑇 

𝑃 𝐾−1 ( 𝑡 ) ℎ ( 𝑡 )d 𝑡, 

the mean time to replacement is 

( 𝑁 𝑇 ) 𝑃 𝐾 ( 𝑁 𝑇 ) + ∫
𝑁𝑇 

0 
𝑡 d 𝑃 𝐾 ( 𝑡 ) = ∫

𝑁𝑇 

0 
𝑃 𝐾 ( 𝑡 )d 𝑡, (1) 

and the expected number of minimal repairs until replacement is 

𝐾−1 ∑
𝑗=0 

𝑗𝑝 𝑗 ( 𝑁𝑇 ) + 𝐾𝑃 𝐾 ( 𝑁𝑇 ) = 𝐾 − 

𝐾 ∑
𝑗=0 

( 𝐾 − 𝑗) 𝑝 𝑗 ( 𝑁𝑇 ) 

= 

𝐾 ∑
𝑗=1 

𝑃 𝑗 ( 𝑁𝑇 ) = ∫
𝑁𝑇 

0 
𝑃 𝐾 ( 𝑡 ) ℎ ( 𝑡 )d 𝑡, (2) 

Therefore, the expected repair and replacement cost rate is 

𝐶 𝐹 ( 𝑁, 𝐾; 𝑇 ) = 

𝑐 𝑅 + 𝑐 𝑚 ∫ 𝑁𝑇 

0 𝑃 𝐾 ( 𝑡 ) ℎ ( 𝑡 )d 𝑡 

∫ 𝑁𝑇 

0 𝑃 𝐾 ( 𝑡 )d 𝑡 
, (3) 

where 𝑐 𝑅 = replacement cost at time NT or at repair K , and 𝑐 𝑚 = cost of 

each minimal repair. 

The integrated model in (3) includes the following replacement poli- 

cies: When the unit is replaced at time T (0 < T < ∞), 

𝐶( 𝑇 ) ≡ lim 

𝐾→∞
𝐶 𝐹 (1 , 𝐾; 𝑇 ) = 

𝑐 𝑅 + 𝑐 𝑚 𝐻( 𝑇 ) 
𝑇 

, (4) 

which agrees with the expected cost rate of the original periodic model 

with time T [25,26] . When the unit is replaced at time 𝑁𝑇 ( 𝑁 = 

1 , 2 , ⋯ ; 0 < 𝑇 < ∞) , 

𝐶( 𝑁 ; 𝑇 ) ≡ lim 

𝐾→∞
𝐶 𝐹 ( 𝑁, 𝐾; 𝑇 ) = 

𝑐 𝑅 + 𝑐 𝑚 𝐻( 𝑁𝑇 ) 
𝑁𝑇 

( 𝑁 = 1 , 2 , ⋯ ) . (5) 

When the unit is replaced at repair 𝐾 ( 𝐾 = 1 , 2 , ⋯ ) , 

𝐶 ( 𝐾 ) ≡ lim 

𝑁→∞
𝐶 𝐹 ( 𝑁, 𝐾; 𝑇 ) = 

𝑐 𝑅 + 𝑐 𝑚 𝐾 

∫ ∞
0 𝑃 𝐾 ( 𝑡 )d 𝑡 

( 𝐾 = 1 , 2 ⋯ ) . (6) 

When the unit is replaced at repair 𝐾 ( 𝐾 = 1 , 2 , ⋯ ) or at time T (0 < T < 

∞), whichever occurs first, 

𝐶 𝐹 ( 𝐾; 𝑇 ) ≡ 𝐶 𝐹 (1 , 𝐾; 𝑇 ) = 

𝑐 𝑅 + 𝑐 𝑚 ∫ 𝑇 

0 𝑃 𝐾 ( 𝑡 ) ℎ ( 𝑡 )d 𝑡 

∫ 𝑇 

0 𝑃 𝐾 ( 𝑡 )d 𝑡 
. (7) 

3.2. Optimum policies 

When the failure rate h ( t ) ≡ d H ( t )/d t increases strictly with t to 

ℎ (∞) = ∞, we find optimum replacement policies of T, N and K for the 

above expected cost rates and comparisons among them are made in 

terms of cost rates. 

3.2.1. Optimum T 

∗ , N 

∗ and K 

∗ 

We find optimum T ∗ , N 

∗ and K 

∗ to minimize C ( T ) in (4) , C ( N ; T ) in 

(5) and C ( K ) in (6) , respectively. 

(1) Optimum T 

∗ 

Optimum T ∗ (0 < T ∗ < ∞) to minimize C ( T ) satisfies [25,26] 

𝑇 ℎ ( 𝑇 ) − 𝐻( 𝑇 ) = 

𝑐 𝑅 

𝑐 𝑚 
, (8) 

and the resulting cost rate is 

𝐶( 𝑇 ∗ ) = 𝑐 𝑚 ℎ ( 𝑇 ∗ ) . (9) 
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