
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 705–714

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.116

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

10.1016/j.procs.2017.05.116 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

Facilitating the Reproducibility of Scientific Workflows
with Execution Environment Specifications

Haiyan Meng and Douglas Thain

Department of Computer Science and Engineering, University of Notre Dame
Notre Dame, Indiana, USA

hmeng@nd.edu and dthain@nd.edu

Abstract
Scientific workflows are designed to solve complex scientific problems and accelerate scientific

progress. Ideally, scientific workflows should improve the reproducibility of scientific applica-
tions by making it easier to share and reuse workflows between scientists. However, scientists
often find it difficult to reuse others’ workflows, which is known as workflow decay. In this
paper, we explore the challenges in reproducing scientific workflows, and propose a framework
for facilitating the reproducibility of scientific workflows at the task level by giving scientists
complete control over the execution environments of the tasks in their workflows and integrating
execution environment specifications into scientific workflow systems. Our framework allows
dependencies to be archived in basic units of OS image, software and data instead of gigantic
all-in-one images. We implement a prototype of our framework by integrating Umbrella, an
execution environment creator, into Makeflow, a scientific workflow system.

To evaluate our framework, we use it to run two bioinformatics scientific workflows, BLAST
and BWA. The execution environment of the tasks in each workflow is specified as an Umbrella
specification file, and sent to execution nodes where Umbrella is used to create the specified
environment for running the tasks. For each workflow we evaluate the size of the Umbrella spec-
ification file, the time and space overheads of creating execution environments using Umbrella,
and the heterogeneity of execution nodes contributing to each workflow. The evaluation results
show that our framework improves the utilization of heterogeneous computing resources, and
improves the portability and reproducibility of scientific workflows.

Keywords: reproducible research, scientific workflows, execution environment specifications

1 Introduction

The reproducibility of scientific applications has become increasingly important for the progress
of computational science because it allows the original author and others to reproduce, verify,
and further extend the original applications [10]. Different solutions have been proposed to

1

This space is reserved for the Procedia header, do not use it

Facilitating the Reproducibility of Scientific Workflows
with Execution Environment Specifications

Haiyan Meng and Douglas Thain

Department of Computer Science and Engineering, University of Notre Dame
Notre Dame, Indiana, USA

hmeng@nd.edu and dthain@nd.edu

Abstract
Scientific workflows are designed to solve complex scientific problems and accelerate scientific

progress. Ideally, scientific workflows should improve the reproducibility of scientific applica-
tions by making it easier to share and reuse workflows between scientists. However, scientists
often find it difficult to reuse others’ workflows, which is known as workflow decay. In this
paper, we explore the challenges in reproducing scientific workflows, and propose a framework
for facilitating the reproducibility of scientific workflows at the task level by giving scientists
complete control over the execution environments of the tasks in their workflows and integrating
execution environment specifications into scientific workflow systems. Our framework allows
dependencies to be archived in basic units of OS image, software and data instead of gigantic
all-in-one images. We implement a prototype of our framework by integrating Umbrella, an
execution environment creator, into Makeflow, a scientific workflow system.

To evaluate our framework, we use it to run two bioinformatics scientific workflows, BLAST
and BWA. The execution environment of the tasks in each workflow is specified as an Umbrella
specification file, and sent to execution nodes where Umbrella is used to create the specified
environment for running the tasks. For each workflow we evaluate the size of the Umbrella spec-
ification file, the time and space overheads of creating execution environments using Umbrella,
and the heterogeneity of execution nodes contributing to each workflow. The evaluation results
show that our framework improves the utilization of heterogeneous computing resources, and
improves the portability and reproducibility of scientific workflows.

Keywords: reproducible research, scientific workflows, execution environment specifications

1 Introduction

The reproducibility of scientific applications has become increasingly important for the progress
of computational science because it allows the original author and others to reproduce, verify,
and further extend the original applications [10]. Different solutions have been proposed to

1

This space is reserved for the Procedia header, do not use it

Facilitating the Reproducibility of Scientific Workflows
with Execution Environment Specifications

Haiyan Meng and Douglas Thain

Department of Computer Science and Engineering, University of Notre Dame
Notre Dame, Indiana, USA

hmeng@nd.edu and dthain@nd.edu

Abstract
Scientific workflows are designed to solve complex scientific problems and accelerate scientific

progress. Ideally, scientific workflows should improve the reproducibility of scientific applica-
tions by making it easier to share and reuse workflows between scientists. However, scientists
often find it difficult to reuse others’ workflows, which is known as workflow decay. In this
paper, we explore the challenges in reproducing scientific workflows, and propose a framework
for facilitating the reproducibility of scientific workflows at the task level by giving scientists
complete control over the execution environments of the tasks in their workflows and integrating
execution environment specifications into scientific workflow systems. Our framework allows
dependencies to be archived in basic units of OS image, software and data instead of gigantic
all-in-one images. We implement a prototype of our framework by integrating Umbrella, an
execution environment creator, into Makeflow, a scientific workflow system.

To evaluate our framework, we use it to run two bioinformatics scientific workflows, BLAST
and BWA. The execution environment of the tasks in each workflow is specified as an Umbrella
specification file, and sent to execution nodes where Umbrella is used to create the specified
environment for running the tasks. For each workflow we evaluate the size of the Umbrella spec-
ification file, the time and space overheads of creating execution environments using Umbrella,
and the heterogeneity of execution nodes contributing to each workflow. The evaluation results
show that our framework improves the utilization of heterogeneous computing resources, and
improves the portability and reproducibility of scientific workflows.

Keywords: reproducible research, scientific workflows, execution environment specifications

1 Introduction

The reproducibility of scientific applications has become increasingly important for the progress
of computational science because it allows the original author and others to reproduce, verify,
and further extend the original applications [10]. Different solutions have been proposed to

1

This space is reserved for the Procedia header, do not use it

Facilitating the Reproducibility of Scientific Workflows
with Execution Environment Specifications

Haiyan Meng and Douglas Thain

Department of Computer Science and Engineering, University of Notre Dame
Notre Dame, Indiana, USA

hmeng@nd.edu and dthain@nd.edu

Abstract
Scientific workflows are designed to solve complex scientific problems and accelerate scientific

progress. Ideally, scientific workflows should improve the reproducibility of scientific applica-
tions by making it easier to share and reuse workflows between scientists. However, scientists
often find it difficult to reuse others’ workflows, which is known as workflow decay. In this
paper, we explore the challenges in reproducing scientific workflows, and propose a framework
for facilitating the reproducibility of scientific workflows at the task level by giving scientists
complete control over the execution environments of the tasks in their workflows and integrating
execution environment specifications into scientific workflow systems. Our framework allows
dependencies to be archived in basic units of OS image, software and data instead of gigantic
all-in-one images. We implement a prototype of our framework by integrating Umbrella, an
execution environment creator, into Makeflow, a scientific workflow system.

To evaluate our framework, we use it to run two bioinformatics scientific workflows, BLAST
and BWA. The execution environment of the tasks in each workflow is specified as an Umbrella
specification file, and sent to execution nodes where Umbrella is used to create the specified
environment for running the tasks. For each workflow we evaluate the size of the Umbrella spec-
ification file, the time and space overheads of creating execution environments using Umbrella,
and the heterogeneity of execution nodes contributing to each workflow. The evaluation results
show that our framework improves the utilization of heterogeneous computing resources, and
improves the portability and reproducibility of scientific workflows.

Keywords: reproducible research, scientific workflows, execution environment specifications

1 Introduction

The reproducibility of scientific applications has become increasingly important for the progress
of computational science because it allows the original author and others to reproduce, verify,
and further extend the original applications [10]. Different solutions have been proposed to

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.116&domain=pdf

706 Haiyan Meng et al. / Procedia Computer Science 108C (2017) 705–714Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specs Meng and Thain

Figure 1: An Example Makeflow in DAG Figure 2: An Example Makefile: Image Rotation

reproduce single-machine scientific applications. Some popular solutions include virtual ma-
chines [9], Linux Containers (e.g., Docker [14]), and user-space ptrace-based tools (e.g., CDE [7]
and Parrot-packaging tool [13]). In spite of their differences, these solutions all emphasize the
importance of preserving the complete software stack (i.e., execution environment) of scientific
applications for conducting reproducible research [12].

However, many scientific applications are too big to be solved on a single machine, due to
their huge computing and storage requirements. To solve this, scientific workflows [16] were
designed to disseminate complex data transformations and analysis procedures into a set of
smaller and possibly independent tasks, which allows computing resources from clusters, grids
and clouds to be utilized. The tasks involved in a scientific workflow are often organized into a
directed acyclic graph (DAG), where nodes represents tasks and files, and edges represent data
flow and dependency relationship. Figure 1 shows a DAG including six tasks, which represents
the simple workflow example in Figure 2, written in the Makefile language [1]. A real scientific
workflow is usually more complex in both task number and task dependencies.

To make it easy for scientists to compose and execute scientific workflows, a variety of
scientific workflow systems have been developed [18], such as Taverna [15], Pegasus [4] and
Makeflow [1]. The end-users of these workflow systems only need to specify a DAG of tasks.
The workflow systems respond to communicate with execution engines, schedule tasks to the
underlying computing resources, manage data sets and deliver fault tolerance.

Ideally, scientific workflows should improve the reproducibility of scientific applications by
making it easier to share and reuse workflows between scientists. However, scientists often find
it difficult to reuse others’ workflows, which is known as workflow decay [8]. For example, a
study in 2012 of Taverna workflows on myExperiment [6], a social website allowing scientists to
share their workflows, shows that 80% of the workflows on the site cannot be reproduced [19].

Among the causes of workflow decay, the incompatible execution environments on execution
nodes is a recurring significant problem [3, 8, 5, 2]. This work aims to improve the reproducibility
of scientific workflows by bringing the incompatible execution environments to a minimum.

Depending on the scientific workflow system used, scientists have different levels of control
over the underlying execution environments on execution nodes. Pegasus [4] allows scientists
to compose abstract workflows without worrying about the details of the underlying execution
environments, which means sysadmins must respond to the cumbersome job of configuring
computing resources to meet all the requirements of different workflows. Makeflow [1] allows
executables to be specified in workflow specifications and delivered to execution nodes, such as
/usr/bin/convert in Figure 2. This is simple but not always correct, because executables may
be sent to execution nodes with incompatible execution environments. To fix this, Makeflow
allows scientists to specify a Docker image [14] containing the required execution environment,
and delivers the image to execution nodes [20]. This gives scientists more control over the
execution environments, but ends up with gigantic images which are expensive to store.

2

Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specs Meng and Thain

Figure 3: Layers of Scientific Workflow Systems

Attribute Description
machine number 1886
hardware arch x86_64, i686
kernel version Linux, Darwin, Windows NT
OS RHEL5, RHEL6, RHEL7, Mac9, Windows7
RHEL versions 5.11, 6.5, 6.6, 6.7, 6.8, 7.0, 7.2
CPU number 1, 2, 4, 8, 12, 16, 24, 32, 64
memory size Min: 1002MB, Max: 251GB
disk size Min: 9GB, Max: 4.7TB

Table 1: Heterogeneity of the ND HTCondor Pool (Nov. 2016)

In this paper, we explore the challenges in reproducing scientific workflows, and propose a
framework for facilitating the reproducibility of scientific workflows at the task level by giving
scientists complete control over the execution environments of the tasks in their workflows
and integrating execution environment specifications into scientific workflow systems. Our
framework allows dependencies to be archived in basic units of OS image, software and data
instead of gigantic all-in-one images. We implement a prototype of our framework by integrating
Umbrella [11], an execution environment creator, into Makeflow [1], a scientific workflow system
which can utilize computing resources from a HTCondor pool [17].

To evaluate our framework, we use it to run two bioinformatics scientific workflows, BLAST
and BWA. The execution environment of the tasks in each workflow is specified as an Umbrella
specification file, and sent to the execution nodes in the Notre Dame HTCondor pool, where
Umbrella is used to create the environment to run the tasks. For each workflow we evaluate the
Umbrella specification file size, the time and space overheads of creating execution environments
using Umbrella, and the heterogeneity of execution nodes contributing to each workflow.

2 Challenges in Reproducing Scientific Workflows
The reproducibility of scientific workflows depends on how scientific workflow systems are de-
signed and implemented. In this section, we explore the characteristics of scientific workflow
systems, which make it challenging to reproduce scientific workflows.

• Complexity. Scientific workflow systems usually include multiple layers, as shown in
Figure 3. The complexity of different layers vary greatly. The workflow specification
layer simply includes workflow languages and workflow specifications, which can be easily
preserved. However, the task scheduler layer often communicates with multiple execution
engines to achieve maximal speedup. The computing resource layer includes multiple soft-
ware stacks (possibly thousands or even more), together with the networking connecting
them together, and requires much more efforts to be preserved and reproduced.

• Dynamics. The stability of different layers of scientific workflow systems vary a lot.
The workflow specification layer and the specification parser layer are usually very stable
and tightly coupled. Adding new syntax into a workflow language would require the
specification parser change accordingly. The task scheduler layer may add support for
new execution engines as new computing frameworks become popular. The computing
resource layer usually experiences more frequent changes, which is especially true for
opportunistic computing framework like HTCondor [17].

• Heterogeneity. The hardware and software configurations of machines in the computing
resource layer are often heterogeneous, both across different execution engines and within
a single execution engine. For example, Table 1 shows the statistics of machine configura-
tions of the Notre Dame HTCondor pool at November 2016, which is very different from

3

https://isiarticles.com/article/108318

