J. Parallel Distrib. Comput. 109 (2017) 155-177

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

PAR/ D
DISTRIBUTED
COMPUTING

Prior node selection for scheduling workflows in a heterogeneous

system

@ CrossMark

Hidehiro Kanemitsu ®*, Masaki Hanada®, Hidenori Nakazato €

2 Global Education Center, Waseda University, 1-6-1, Nishiwaseda, Shinjuku, Tokyo 169-8050, Japan
b Department of Information Systems, Tokyo University of Information Sciences, 4-1, Onaridai, Wakaba-ku, Chiba 265-8501, Japan
¢ Department of Communications and Computer Engineering, Waseda University, 3-14-9 Okubo, Shinjuku-ku 169-0072, Japan

HIGHLIGHTS

Prior node selection algorithm for scheduling workflows, called LBCNS is proposed.

Objective of LBCNS is to minimize the schedule length while fairly scheduling each job.
LBCNS can be applied for any task scheduling algorithms including list scheduling algorithms.
Experimental results show that the schedule length, efficiency, and fairness are improved.

ARTICLE INFO ABSTRACT

Article history:

Received 26 November 2016

Received in revised form 24 May 2017
Accepted 7 June 2017

Available online 19 June 2017

Many workflow scheduling algorithms for heterogeneous systems have been developed to satisfy mul-
tiple requirements such as minimizing schedule length while maximizing throughput. In particular, in
list-based scheduling approaches, the schedule length depends on the given nodes as well as the task
allocation and ordering policies. This is because the scheduling priority is derived by averaging the
execution time and communication time of the given nodes. If the set of nodes can be adjusted before
Keywords- the scheduling tasks, a small schedule length can be achieved. In this paper, we propose a prior node
DAG selection algorithm, called lower bound based candidate node selection (LBCNS) to select a subset of
given nodes to minimize the schedule length while fairly scheduling each job. Our proposal has two
approaches: (i) LBCNS_DEFAULT, which considers the job characteristics and each node’s performance,
and (ii) priority-based LBCNS, which additionally takes each scheduling priority into account for a

Heterogeneous system
Processor grouping
Node grouping

Task scheduling
Workflow scheduling

dedicated task scheduling algorithm.
The experimental results of extensive simulations show that LBCNS_DEFAULT has the best fairness for

scheduling multiple workflow jobs, while priority-based LBCNS achieves the minimum schedule length
with the highest efficiency for a single workflow job and multiple workflow jobs.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Recent distributed processing schemes, e.g., grid and cloud
systems, enable submitted parallelizable jobs to be executed by
idle computational resources in order to distribute the workloads
imposed by those jobs. For example, resource provisioning in a
cloud system and anode' grouping strategy in a grid are needed to

* Corresponding author.

E-mail addresses: kanemih@ruri.waseda.jp (H. Kanemitsu),
mhanada@rsch.tuis.ac.jp (M. Hanada), nakazato@waseda.jp (H. Nakazato).

1 In this paper, the term “node” refers to a device with one execution mechanism
and one way to communicate with other devices. In the field of task scheduling,
typically the term “processor” is used for such a device. However, in this paper, we
use “node” in order to emphasize that each device or processor can communicate
over the network.

http://dx.doi.org/10.1016/j.jpdc.2017.06.005
0743-7315/© 2017 Elsevier Inc. All rights reserved.

minimize the response time (i.e., the schedule length), maximize
the throughput, or meet other requirements. In particular, the
virtual machine (VM) selection policy in a resource provisioning
policy has an impact on the response time. In light of the inde-
pendent task scheduling used in a heterogeneous system, a node
grouping method takes the performance of each node into account,
i.e,, each node in a group has similar processing speed or every
group has a similar average processing speed.

The above examples are based on the question of how the
subset of nodes should be determined from the given idle nodes to
satisfy the predefined objective functions. However, no theoretical
approach to this problem has yet been established. In a MapReduce
architecture, although how to derive the optimal number of map
tasks or nodes to minimize the response time is a challenging issue,
the actual approach samples the historical execution information


http://dx.doi.org/10.1016/j.jpdc.2017.06.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.06.005&domain=pdf
mailto:kanemih@ruri.waseda.jp
mailto:mhanada@rsch.tuis.ac.jp
mailto:nakazato@waseda.jp
http://dx.doi.org/10.1016/j.jpdc.2017.06.005

156 H. Kanemitsu et al. / ]. Parallel Distrib. Comput. 109 (2017) 155-177

of the system [22]; that is, the approach investigates the correlation
between the number of map tasks and actual execution time in
advance. Such an approach is time consuming. Furthermore, the
workflow or directed acyclic graph (DAG) scheduling problem is
NP-complete [9]. This problem must take into account the pro-
cessing speed and communication bandwidth of each node as well
as the workflow characteristics such as precedence constraints
among tasks. Furthermore, whether the job is data or computa-
tionally intensive must be considered to select the subset of given
nodes. However, to our knowledge, no subset selection approach
for workflow scheduling exists.

As cost-effective task scheduling algorithms in a workflow for
heterogeneous systems, list-based scheduling algorithms are well-
known [5,16,28,29]. In these algorithms, the scheduling priority
assigned to a task is derived from the processing speeds of all nodes
and all communication bandwidths in the given set of nodes. It
follows from this that the response time (hereafter, the “schedule
length”) depends on not only the performance of the assigned
nodes but also that of the unassigned nodes. This characteristic
indicates that the schedule length has space for further improve-
ment depending on the policy to determine the subset of the given
nodes.

In practice, multiple jobs can be submitted to a scheduling
system. In such a case, if an appropriate subset of the given nodes
is determined for one job, the schedule length (i.e., the maximum
response time for all jobs) can be prolonged by the inappropriate
resource allocation for the other jobs caused by a shortage of
appropriate nodes. Thus, it is necessary to fairly allocate resources
among all jobs in order to reduce the maximum schedule length
of the submitted jobs. Here, we consider the case in which one
or more workflow jobs have been stored in the job pool in the
system. They must be scheduled simultaneously to minimize the
maximum schedule length among the jobs. In such a case, these
multiple jobs can be integrated into a larger job, where dummy
start and end tasks are added to the workflow. It can then be
scheduled by conventional a scheduling algorithm, and therefore
the schedule length, i.e., the maximum schedule length of those
jobs is effectively reduced, while the slowdown, which is an index
of fairness in terms of assignment resources, is sacrificed [31]; that
is, such an integration approach can be further improved if each
resource is fairly assigned.

The current challenges of node selection for workflow schedul-
ing can be summarized as follows: (i) the scheduling priority for
each task in a job is not accurate for minimizing the schedule
length because it is derived from all given nodes, and (ii) whether
selecting nodes before scheduling tasks can affect on the fair-
ness in terms of slowdown or not is unknown. In the context of
scheduling tasks in case of multiple workflows, minimizing the
schedule length cannot always lead to a fair scheduling. However,
before scheduling tasks, if we can select the nodes having similar
performance each other and also each having a great effect on
minimizing the schedule length, such a prior node selection can
take an important role for resource provisioning.

In this paper, we propose a candidate node selection algorithm,
called the lower bound based candidate node selection (LBCNS)
for determining the subset of given idle nodes that achieves the
minimum schedule length while fairly scheduling each job in a
heterogeneous distributed system. The key concept behind LBCNS
is to select a set of nodes that obtain good performance by con-
sidering both each workflow characteristic and the performance
of the given idle nodes. As a result, only a set of nodes that can
help minimize the schedule length are selected as assignment
candidates. In particular, the running time without idleness of node
p; is defined as (p;). The subset of nodes with small (p;) is selected
as the set of assignment candidates for scheduling tasks. Moreover,
we propose dedicated node selection algorithms for state-of-the-
art task scheduling algorithms that take each scheduling priority

derivation policy into account to further improve the schedule
length. Experimental results obtained via simulation show that a
schedule length that is better than that of other node selection
policies can be obtained by LBCNS for single and multiple workflow
jobs. Furthermore, we show that the efficiency, which is defined as
the speed-up ratio divided by the number of assigned nodes, can be
reduced. Furthermore, unfairness, defined as the variance in terms
of slowdown among jobs, can be reduced.

The remainder of this paper is organized as follows. Section 2
describes the assumed system and model. Related work in node
grouping methods and task scheduling algorithms are reviewed in
Section 3. We then present the proposed node selection algorithm
LBCNS in Section 4. Extensions of LBCNS for specific task scheduling
algorithms are then presented in Section 5. Experimental results
are described in Section 6. Finally, we conclude this paper in
Section 7.

2. Assumptions
2.1. Job model

We assume a job to be executed on the nodes is a DAG, or a
workflow job. Let G = (V, E) be the DAG or workflow, where V
is the set of tasks, E is the set of edges, i.e., data communications
among tasks, and Vs is the set of assignment units, where each
assignment unit contains one or more tasks. An ith task is denoted
as n;. Let w(n;) be the size of n;, i.e., w(n;) is the sum of the time
units needed to process the task by the reference node. We define
the data dependency and direction of data transfer from n; to n; as
e; ;. Further, c(e; ;) is the sum of time units taken to transfer data
from n; to n; over the reference communication link.

One constraint imposed by a workflow is that a task cannot
begin to execute until it receives all the data from its predecessor
tasks. For instance, e;; indicates that n; cannot be started until
the data from n; arrives at the node that will execute n;. Further,
pred(n;) is the set of immediate predecessors of n;, and suc(n;) is
the set of immediate successors of n;.

In the context of multiple job scheduling, each job is defined as
Gi, where 1 <i <], i.e., there are ] workflow jobs in a job pool and
they must be scheduled simultaneously.

2.2. System model

For the system model, we assume that each node is completely
connected to other nodes with non-identical processing speeds
and communication bandwidths. The set of nodes is expressed
as P = {p1,p2,...,pn}, and let the set of processing speeds be
a = {a1, a2, ..., ay}. The execution time when n; is processed at
the speed of ¢; is expressed as

w(ny)

tp(nkaai): P (1)

This assumes that the execution time is inversely proportional to
the processing speed, i.e., the throughput of each processor in a
node using a uniform execution model. Let the set of communica-
tion bandwidths be 8 = {81, B2, . .. Bv} when the communication
bandwidth of the reference communication link is set to 1. If c(e; ;)
is sent from p, to p;, the communication time is defined by the
communication speed Ly ;, where Ly ; = min {8, B;}. This assumes
that the communication time is dominated by the smallest com-
munication bandwidth through every device between py and py,
provided that the bandwidth on every router is supposed to be
larger than Ly, for ¥{py, pij} € P. Thus, the communication time
of e; j from py to p; is defined as

teegjo L) = 0 + 2, @)

Ly

where Oy is the setup time for communication at py. Typically, Oy
is negligible with respect to c(e;;)/L.




ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


https://isiarticles.com/article/108329

