
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A cross-layer optimized storage system for workflow applications
Samer Al-Kiswany a,∗, Lauro B. Costa b, Hao Yang c, Emalayan Vairavanathan d,
Matei Ripeanu c

a University of Waterloo, Canada
b Google Inc., United States
c University of British Columbia, Canada
d NetApp Inc., Canada

a r t i c l e i n f o

Article history:
Received 30 April 2016
Received in revised form
18 February 2017
Accepted 24 February 2017
Available online xxxx

Keywords:
Cross layer optimizations
Distributed file systems
Workflow management
Batch processing systems

a b s t r a c t

This paper proposes using file system custom metadata as a bidirectional communication channel
between applications and the storage middleware. This channel can be used to pass hints that enable
cross-layer optimizations, an option hindered today by the ossified file-system interface. We study this
approach in the context of storage system support for large-scale workflow execution systems: Our
workflow-optimized storage system (WOSS), exploits application hints to provide per-file optimized
operations, and exposes data location to enable location-aware scheduling.We argue that an incremental
adoption path for adopting cross-layer optimizations in storage exists, present the system architecture for
a workflow-optimized storage system and its integration with a workflow runtime engine, and evaluate
this approach using synthetic and real applications over multiple success metrics (application runtime,
generated network stress, and energy). Our performance evaluation demonstrates that this design brings
sizeable performance gains. On a large scale cluster (100 nodes), compared to two production class
distributed storage systems (Ceph and GlusterFS), WOSS achieves up to 6× better performance for the
synthetic benchmarks and 20–40% better application-level performance gain for real applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Custommetadata features (a.k.a., ‘tagging’) have seen increased
adoption in systems that support the storage, management,
and analysis of ‘big-data’. However, the benefits expected are
all essentially realized at the application level either by using
metadata to present richer or differently organized information
to users (e.g., enabling better search and navigability [1,2]) or
by implicitly communicating among applications that use the
same data items (e.g., to support provenance, or inter-application
coordination).

Our thesis is that, besides the above uses, custom metadata
can be used as a bidirectional communication channel between
applications and the storage system and thus become the key

∗ Correspondence to: David R. Cheriton School of Computer Science, University
of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.

E-mail addresses: alkiswany@uwaterloo.ca (S. Al-Kiswany),
lbeltrao@gmail.com (L.B. Costa), haoy@ece.ubc.ca (H. Yang),
emalayan@netapp.com (E. Vairavanathan), matei@ece.ubc.ca (M. Ripeanu).

enabler for cross-layer optimizations that, today, are hindered by
an ossified file-system interface.

This communication channel is bidirectional as the cross-layer
optimizations enabled are based on information passed in both
directions across the storage system interface (i.e., application
to storage and storage to application). Possible cross-layer
optimizations include:

• (top-down) Applications can use metadata to provide hints to
the storage system about their future behavior, such as: per-file
access patterns, ideal data placement (e.g., co-usage), predicted
file lifetime (i.e., temporary files vs. persistent results), access
locality in a distributed setting, desired file replication level, or
desired quality of service. These hints can be used to optimize
the storage layer.

• (bottom-up) The storage system can use metadata as a
mechanism to expose key attributes of the data items
stored. For example, a distributed storage system can provide
information about data location, thus enabling location-aware
scheduling.

The approach we propose has four interrelated advantages: it uses
an application-agnostic mechanism, it is incremental, it offers

http://dx.doi.org/10.1016/j.future.2017.02.038
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.02.038
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:alkiswany@uwaterloo.ca
mailto:lbeltrao@gmail.com
mailto:haoy@ece.ubc.ca
mailto:emalayan@netapp.com
mailto:matei@ece.ubc.ca
http://dx.doi.org/10.1016/j.future.2017.02.038

2 S. Al-Kiswany et al. / Future Generation Computer Systems () –

a low cost for experimentation, and it focuses the research
community effort on a single storage system prototype, saving
considerable development and maintenance effort dedicated,
nowadays, to multiple storage systems each targeting a specific
workload (e.g., HDFS and PVFS [3]). First, the communication
mechanism we propose: simply annotating files with arbitrary
⟨key, value⟩ pairs, is application-agnostic. Second, our approach
enables evolving applications and storage-systems independently
while maintaining the current interface (e.g., POSIX), and offers an
incremental transition path for legacy applications and storage-
systems: A legacy application will still work without changes
(yet will not see performance gains) when deployed over a new
storage system that supports cross-layer optimizations. Similarly
a legacy storage will still support applications that attempt to
convey optimization hints, yet it will not offer performance
benefits. As storage and applications incrementally add support
for passing and reacting to optimization hints, the overall system
will see increasing gains. Finally, exposing information between
different system layers implies tradeoffs between performance
and transparency. To date, these tradeoffs have been scarcely
explored. We posit that a flexible encoding (key/value pairs) as
the information passing mechanism offers the flexibility to enable
low-cost experimentation within this tradeoff space.

The approach we propose falls in the category of ‘guided
mechanisms’ (i.e., solutions for applications to influence data
placement, layout, and lifecycle), the focus of other projects
as well. In effect, the wide range (and incompatibility) of past
solutions proposed in the storage area in the past two decades
(and incorporated to some degree by production systems — pNFS,
PVFS [3], GPFS [4], Lustre, and other research projects [5–7]), only
highlights that adopting a unifying abstraction is an area of high
potential impact. The novelty of this paper comes from the ‘‘elegant
simplicity’’ of the solution we propose. First, unlike past work,
we maintain the existing API (predominantly POSIX compatible),
and, within this API, we propose using the existing extended file
attributes as a flexible, application-agnostic mechanism to pass
hints across the application/storage divide. Second, and equally
importantly, we propose an extensible storage system architecture
that can be extended with application specific optimizations.

Wedemonstrate our approach by building a POSIX-compatible
storage system to efficiently support one application domain:
scientific workflows (an application domain detailed in Section 2
and Fig. 1).We chose this domain as this community has to support
a large set of legacy applications (developed using the POSIX API).
Our storage system is instantiated on-the fly to aggregate the
resources of the computing nodes allocated to a batch application
(e.g., disks, SSDs, and memory) and offers a shared file-system
abstractionwith twokey features. First, it optimizes the data layout
(e.g., file and block placement, file co-placement) to efficiently
support the workflow data access patterns (as hinted by the
application). Second, the storage system uses custom metadata to
expose data location information so that the workflow runtime
engine can make location-aware scheduling decisions. These two
features are key to efficiently support workflow applications as
their generated data access patterns are irregular and application-
dependent.
Contributions. This project demonstrates that it is feasible to have
a POSIX compatible storage system that can be yet optimized for
each application (or application mix) even if the application has a
different access pattern for different files. The key contributions of
this work are:

• Wepropose a newapproach that uses custommetadata to enable
cross-layer optimizations between applications and the storage
system. Further, we argue that this approach can be adopted
incrementally. This suggests an evolution path for co-designing

POSIX-compatible file-systems together with the middleware
ecosystem they coexist such that performance efficiencies are
not lost and flexibility is preserved, a key concern to support
legacy applications.

• We present an extensible storage system architecture that sup-
ports cross-layer optimizations. We demonstrate the viability
of this approach through a storage system prototype optimized
for workflow applications (dubbed WOSS, Fig. 1). WOSS sup-
ports application-informed data placement based on per-file
hints, and exposes data location to enable location-aware task
scheduling. Importantly, we demonstrate that it is possible to
achieve our goals, with only minor changes to the workflow
scheduler, and without changing the application code or task-
ing the developer to annotate their code to reveal the data usage
patterns.

• We demonstrate, using synthetic benchmarks as well as three
real-world workflows, that this design brings sizeable performance
gains. On a large scale cluster (100 nodes), compared to two
production class distributed storage systems (Ceph [8] and
GlusterFS [9]), WOSS achieves up to 6× higher performance
for the synthetic benchmarks and 20%–40% application-level
performance gain for real applications.

Organization of this paper . The final section of this paper includes
a detailed design discussion and design guidelines, discusses the
limitations of this approach, and elaborates on the argument that
custom metadata can benefit generic storage systems by enabling
cross-layer optimizations (Section 5). Before that, we present
the context (Section 2), the design (Section 3) and evaluation
(Section 4) of a first storage system we designed in this style: the
workflow-optimized storage system (WOSS).

2. Background and related work

This section starts by briefly setting up the context: the target
application domain and the usage scenario. It then continues
with a summary of data access patterns of workflow applications
(Section 2.1) and a survey of relatedwork on alleviating the storage
bottleneck (Section 2.2.
The application domain: workflow applications. Metaapplications
that assemble complex processing workflows using existing
applications as their building blocks are increasingly popular
in the science domain [10–13]. A popular approach to support
these workflows is the many-task approach [14], through which
the workflow assembles a set of independent processes that
communicate through intermediary files stored on a shared POSIX
file-system (e.g., Montage workflow detailed in Fig. 15). The
dependency between the different executables in a workflow are
expressed in scripts or special domain-specific languages [15].

The workflow scheduler schedules the workflow tasks on a set
of compute nodes allocated exclusively to the workflow (Fig. 1).
The scheduler submits the tasks only when all its input files are
available in the storage system. Workflow tasks access the storage
system through the Linux file system API.

Three main advantages make most workflow runtime engines
adopt this approach: simplicity, direct support for legacy applica-
tions and support for fault-tolerance. First, a shared file-system
approach simplifies workflow development, deployment and de-
bugging: essentially workflows can be developed on a workstation
then deployed on a large machine without changing the environ-
ment. Moreover, a shared file-system simplifies workflow debug-
ging as intermediate computation state can be easily inspected at
runtime and, if needed, collected for debugging or performance
profiling. Second, a shared file-system supports the legacy applica-
tions that form the individual workflow stages as these generally
use the POSIX API. Finally, this approach simplifies fault-tolerance:

https://isiarticles.com/article/108340

