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A multitude of new applications in bioprocess technology strongly depend on model-based methods as they
feature prediction and control capabilities. The critical path is usually the availability of suitable models. In this
work a workflow for the generation of substantial target-oriented mechanistic process models is presented. This
workflow is based on backpropagation starting from a material balance for a certain target variable. Iteratively,
necessary states as well as mechanistic links are included in the model using a model library reducing the
computational effort. The parameters of these links are estimated using a simplex algorithm whose objective
function depends on the target variable only. Practical identifiability analysis is used for the assessment of the
need of further iterations and for validating the mechanistic model.

To demonstrate the workflow, a model describing a mammalian cell culture process aiming at modeling
viable cell count is used as an example. The generated model satisfies the predefined requirements and is very
simple, consisting of three states and seven model parameters only. The presented workflow is simple, generic,
transparent, so that also applications in a regulatory environment should be possible. It also provides additional

process knowledge that can be used in bioprocess development and optimization.

1. Introduction

The maximization of product formation under certain process
boundary conditions is one of the major aims of industrial bioprocesses.
Thereby, biopharmaceutical production processes represent a particular
challenge due to their highly complex structure resulting from media,
cell behavior and process parameters. In order to ensure consistent high
product quality, the Quality by Design (QbD) and the Process Analytical
Technology (PAT) initiative have become more and more important in
recent years, where the latter suggests to monitor and to control critical
process parameters (CPP) [1-4]. In this context, a variety of methods
and technologies can be found in literature for process monitoring and
control. A multitude of them, such as soft sensors for example [5-7],
depend on mathematical models describing partial aspects of the pro-
cess. Soft sensors are a powerful tool for the estimation of difficult-to-
measure or not measureable variables of interest basing upon other
measurements and process models. The success of such methods de-
pends strongly on the quality of the model used, i.e. the model used has
to reflect the investigated process adequately. For that purpose, vali-
dated models have to be set up. According to [8] model validation

means that the model reflects the system behavior of the modeling
target variable with a satisfactory range of accuracy. More precisely, a
detailed description and valuation of: (i) the model in- and outputs, (ii)
the model parameters and (iii) the validity space, that should largely
overlap with the operational space of the process, is needed. As men-
tioned before, the modeling of bioprocesses is challenging due to the
high number of biochemical reactions and the dynamic behavior of
biological systems that have to be taken into account. On the other
hand, in bioprocess engineering a good process is by definition as
simple as possible and defined boundaries should be controlled as ac-
curate as necessary which should be reflected by the process model of
course. This leads to a number of simplifications reducing the quality of
the model and its area of validity.

In order to generate adequate process models various workflows
exist in literature. Most of these workflows are designed for data-driven
models. The description of a very detailed workflow can be found in the
handbook of good modeling practice (GMP) [9]. Depending on the aim
and the application of the model, different methodologies of validation
exist. As data-driven models describe an input-output relation they can
be validated using statistical methods such as cross-validations or
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analysis of variance (ANOVA). In order to model bioprocesses, me-
chanistic models, which are based on interpretable equations, become
more and more popular [10]. They describe the sum of relevant in-
dividual occurring processes or mechanisms in a system [11]. The va-
lidation of mechanistic models includes the validation of the model
structure and the model parameters. The enormous variety of possible
relevant physiological variables and parameters as well as their inter-
actions inevitably would result in a limitation of resources, which are
process knowledge, information and computation power. Therefore,
modelers have to restrict themselves by a subjective choice of a model
structure. Single publications are trying to limit this freedom by pro-
viding a model library for certain applications and systems [12]. Gen-
erally, the model structure used for describing a process is usually
predefined in a certain way. Model libraries consisting of several pro-
cess models are often used by modelers leading to two main limitations:
(i) insufficient computational power to estimate the best model struc-
ture based on systematic investigation of all possible models being
available in the model library using a grid search, (ii) limited degrees of
freedom due to a limited model library. These two limitations are ne-
gatively proportional to each other. This means that the grid search
becomes increasingly ineffective with a larger model library. Within the
framework of data to information to knowledge, a variety of methods
can be used to estimate potential correlations in an unknown system
[13-15] reducing the number of potential model structures. Herold and
King [16] shown for example how process events can be used within a
bootstrap analysis in order to setup hypotheses of overall model
structures. Nevertheless, the challenge of restricting variables and
parameters still exists. Furthermore, model parameters have to be va-
lidated. For complex models containing many parameters, this is a very
complex and computationally expensive procedure resulting from their
cross-correlations.

This paper followed the hypothesis that it is more difficult to reduce
complex models than setting up substantial models which are designed
exactly for the modeling target. The aim is to present a new workflow
for the generation of substantial, transparent and comprehensible
target-oriented mechanistic process models. These models are restricted
in their complexity due to the modeling objectives and are set up using
objective criteria. A special feature of the developed workflow is the
possibility to set up bioprocess models without predefining model states
and equations focusing on the target variable only. Furthermore, in-
stead of using a model library containing complete process models, a
smaller model library consisting of so-called “mechanistic links” is used.
Mechanistic links represent single equation terms describing a single
mechanism like a kinetic or stoichiometric relationship between in-
directly determinable physiological variables and directly determinable
system states. In contrast to data-driven artificial neural networks
(ANN), where the inputs for single neurons in the hidden layer before
fitting are unknown, the inputs for mechanistic links can be calculated
from existing data. A significant challenge in the development of ANNs
is the estimation of the big amount of model parameters. Therefore,
different algorithms such as the backpropagation and Marquardt algo-
rithm have been developed [17,18]. In this work, the basic idea of the
backpropagation algorithm is applied to mechanistic models setting up
the model iteratively starting inversely from a material balance for the
target variable. This means a stepwise parameter fit of single mechan-
istic links in order to prevent cross correlations between model para-
meters of different investigated mechanistic links. Potential mechanistic
links are chosen from the model library due to objective criteria based
on an identifiability analysis. This allows the step-by-step setup and
validation of single mechanistic links leading to a model consisting of
necessary state variables and parameters only. Thus, the setup und
validation of a whole process model consisting of predefined states is
reduced to the setup and the validation of simple single mechanistic
links. For estimating the parameters of these links a standard simplex
algorithm with objective function, only depending on the target vari-
able, is used. This reduces the number of considered parameters
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drastically in every iteration step. Thus, the basic hypothesis of this
paper can be formulated as follows: “The necessary condition for a valid
process model is the validity of the single mechanistic links.” This idea
bases on the idea of the incremental identification of kinetic models by
Brendel et al. [19].

In the following the developed workflow is described from the
theoretical point of view step-by-step. After that we illustrate the
workflow by an example, setting up an adequate model for an industrial
mammalian cell culture process using experimental data. As target
variable of the model the viable cell count (VCC) is considered. The
results show good agreement of experimental data with the model.

2. Material and methods
2.1. Investigated bioprocess

In order to test the modeling workflow using experimental data a
fed-batch process was performed. An industrial CHO cell line was cul-
tivated in chemically defined medium provided by the industrial
partner. The fed-batch process was carried out in a 3.6 L bioreactor
system (Labfors 5, Infors, Switzerland) with an initial working volume
of 2 L. Closed-loop controlled process parameters were the temperature
(37 °C), the pH-value (6.8), the dissolved oxygen tension (40%) and the
partial pressure of carbon dioxide (125 mbar). The experiment was
performed using three different feeds, namely a glucose feed, a gluta-
mine feed and a feed with limiting components. The glucose feed and
the glutamine feed were controlled in a way that a minimum supply
was ensured in accordance with a specific glucose uptake rate of
0.025 mM/109cells/h and a specific glutamine uptake rate of
0.01 mM/109cells/h respectively. Under these conditions glycolysis is a
limiting flux with respect to the tricarboxylic acid cycle [20]. Samples
were taken every 12 h. Viable cell count (VCC) and dead cell count
(DCC) were measured by an automated image analyzer (Cedex HiRes
Analyzer, Roche, Mannheim, Germany). Both measurements were
performed in triplicates. As lysis is a well-known phenomenon in cell
culture processes, it was taken into account for the determination of
dead cells according to Klein et al. [21]. The concentration of glucose
(Glc), glutamine (Glu), lactate (Lac) and ammonia (NH4) were mea-
sured by an enzymatic analyzer (Cedex BioHT, Roche, Mannheim,
Germany). Limiting substrate (LS) concentration was measured by an
HPLC (Thermo Fisher Scientific, United States).

2.2. Calculation of specific rates

All specific rates appearing in the investigated mechanistic links
were calculated by using a simple material balance equation for the
corresponding state. Basic assumption for the calculation is that the
specific rate is constant between two measurement points. Solving the
material balance equation using an ordinary differential equation
(ODE) solver (MATLAB 2015b: ode23) as well as measurements gen-
erated by the experiment, the specific rates were calculated checking
whether the material balance closes in each measured point. The
computation was performed within a loop for each measurement in-
terval. Firstly, the specific growth and death rate have to be determined
in order to provide a time resolved active biomass, which is necessary
for the calculation of the additional specific rates as input. Thereafter,
the other specific rates are calculated according to the material balance.
The advantage of this approach is that the specific rates can be used
directly for the calculation of the states. Because each specific rate has a
defined time window, different sampling frequencies can be easily
compensated by this approach. In addition the assumption of a linear
trend between two measurement points is not necessary. This approach
without smoothing can result in noisy specific rates.
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