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a b s t r a c t

In this work, the notion of reduction is introduced for discrete-time nonlinear input-delayed systems.
The retarded dynamics is reduced to a new system which is free of delays and equivalent (in terms of
stabilizability) to the original one. Different stabilizing strategies are proposed over the reduced model.
Connections with existing predictor-based methods are discussed. The methodology is also worked out
over particular classes of time-delay systems as sampled-data dynamics affected by an entire input delay.
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1. Introduction

The seminal works by Smith [1] and Artstein [2] have inspired a
research toward time-delay systems as an unavoidable paradigm
in control theory because of their involvement in a lot of practical
situations. Investigations have been addressed to the study of the
effects of time delay in a control system emphasizing on drawback
and also, unexpectedly, advantages. As an example, it has been
shown that introducing a delay over the control system might
make a non stabilizable (or not controllable) system stabilizable (or
controllable) as shown, among others, in [3] or [4]. Furthermore,
the huge developments in classical (non-delayed) nonlinear con-
trol motivated several important works devoted to extend those
well-known results to time-delay systems (e.g., [3,5–8] and refer-
ences therein). Nevertheless, a lot of questions still remain unan-
swered in the case of both continuous and discrete-time dynamics.

In this paper, the focus is set toward time-delay discrete-time
systems which have proven themselves to be of extreme interest
for several reasons [9–12]. Among them, a well-knownmotivation
is provided by the fact that retarded discrete-time systems are
finite dimensional so enabling one to restate the design problem
over an extended and delay-free state–space model. That is even
more interesting when the discrete-time retarded system is issued
from the sampling of dynamics affected by input delays [13].
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This paper addresses the stabilization of discrete-time nonlin-
ear dynamics affected by input-delay. In this context, severalworks
were carried out, especially in the linear context, by employing
descriptor (mostly for linear systems, [3]) or prediction based
feedback [14]. As this latter techniqueusually lacks in robustness, it
was recently improved through Immersion and Invariance in [15].
Though, the aforementioned strategy is still hard to extend to
larger classes of time-delay systems. Inspired by the work by
Artstein [2], we aim at extending the reduction model approach
to the discrete-time nonlinear context. Roughly speaking, given
a nonlinear discrete-time dynamics affected by a N step input
delay, we seek for a model which is delay-free and equivalent
to the original retarded system at least as far as stabilizability is
concerned. In doing so, we provide an explicit way of computing
such a reduction and we prove that any feedback stabilizing its
corresponding dynamics also achieves stabilization of the retarded
dynamics. Then, we present several ways of designing control by
exploiting the properties of the original delay-free system (i.e., the
retarded system computed for N = 0) such as smooth stabiliz-
ability (in the Lyapunov sense) and u-average passivity (in the
sense of [16]). Connections to predictor-based feedback laws are
established and commented. The cases of Linear Time Invariant
(LTI) and input-affine-like dynamics are illustrated as cases study
as well as the case of sampled-data systems affected by the so-
called entire delay [17,18].

The paper is organized as follows: the problem is formulated in
Section 2 and general recalls on discrete-time delay-free systems
are provided in Section 3; the definition of the reduction and its
stabilizing properties with respect to the original retarded dynam-
ics are in Section 4; the control design is addressed in Section 5
while some case studies are discussed in Section 6; conclusions and
perspectives end the paper in Section 7.
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Notations and definitions: N and R denote, respectively, the set
of natural and real numbers including the 0. For any uj

∈ R and
j = 1, . . . ,m and wi

∈ R for a fixed i ≤ m, we denote wi
=

(u1, . . . , ui−1, wi, 0, . . . , 0) ∈ Rm. u[k−N,k[ denotes the story of u
over time window [k − N, k[ (i.e., u[k−N,k[ = {uk−N , . . . , uk−1}). All
the functions and vector fields defining the dynamics are assumed
smooth over the respective definition spaces. Id and I denote the
identity function and matrix respectively. Given a vector field f ,
Lf denotes the Lie derivative operator, Lf =

∑n
i=1fi(·)∇xi with

∇xi :=
∂

∂xi
. Given two vector fields f and g , adf g = Lf ◦ Lg Id − Lg ◦

Lf Id = [f , g] and iteratively adif g = [f , adi−1
f g]. eLf Id (or ef Id, when

no confusion arises) denotes the associated Lie series operator,

eLf := I +
∑

i≥1
Lif
i! . Given any smooth function h : Rn

→ R then

eLf h(x) = h(eLf Id
⏐⏐
x).

2. Problem statement

In this paper, we address the problem of stabilizing via reduc-
tion discrete-time dynamics with discrete input delays of the form

xk+1 = F (xk, uk−N ) (1)

with N ∈ N, x ∈ Rn, u ∈ Rm, F (·) : Rn
× Rm

→ Rn and the origin
as equilibrium to be stabilized. The approach consists in defining
a reduction variable (or simply reduction) whose dynamics (the
reduced dynamics) is delay-free and of the same dimension as the
original retarded system. Moreover, the stabilizability properties
of the reduced model are equivalent to those of the original sys-
tem; namely, any feedback stabilizing the reduce model ensures
stabilization of the retarded dynamics as well.

3. Recalls on discrete-time systems

In the following, we refer to

Σd : xk+1 = F (xk, uk) (2)

as the delay-free dynamics associated to (1) when N = 0 .

3.1. The differential-difference (or generically (F0,G)) representation

As proposed in [19], (2) can be equivalently represented by two
coupled difference and differential equations whenever the drift
term dynamics F (·, 0) := F0(·) admits an inverse.1 More in detail,
assumingm = 1, Σd described as a map by (2) can be equivalently
represented in the (F0,G)-form below

x+
= F0(x), x+

:= x+(0) (3a)
∂x+(u)

∂u
= G(x+(u), u) (3b)

where x+(u) denotes a curve parametrized by u over Rn and
G(·, u) : Rn

× R → Rn satisfies2 G(x, u) := ∇uF (x, u)
⏐⏐
x=F−1(x,u).

It is a matter of computations to verify that for any pair (x, u), the
map F (·, u) can be recovered by integrating (3b) over [0, u[ with
initial condition fixed by (3a) as x+

= F0(x). One gets

F (x, u) = x+(u) = F0(x) +

∫ u

0
G(x+(v), v)dv (4)

and thus x+(uk) = xk+1 = F (xk, uk) for any pair (xk, uk).

Remark 3.1. Invertibility of F0(·) guarantees the existence ofG(·, u)
and integrability of (3b) with well defined solution (4) for u suffi-

1 There exists F−1
0 : Rn

→ Rn such that F−1
0 (·) ◦ F0(x) = F0(·) ◦ F−1

0 (x) = x.
2 Given a smoothmapping F (x, u) : Rn

×Rm
→ Rn , F−1(x, u) denotes the inverse

of F with respect to x; i.e., F (F−1(x, u), u) = F−1(F (x, u), u) = x.

ciently close to zero. Invertibility of F0(·) can be relaxed to require
the existence of a nominal control value ū ∈ R for which F (·, ū)
admits an inverse. In such a case, integrability of (3b) between ū
and u is still guaranteed for u in a neighborhood of ū.

In the multi-input case (m > 1), one defines analogously the
(F0,G)-form with G(x, u) = (G1(x, u), . . . ,Gm(x, u)) and Gi(·, u) :=

∇uiF (x, u)
⏐⏐
x=F−1(x,u) for i = (1, . . . ,m) by setting

x+
= F0(x), x+

:= x+(0) (5a)
∂x+(u)
∂u1 = G1(x+(u), u) (5b)

. . . (5c)
∂x+(u)
∂um = Gm(x+(u), u). (5d)

The family of controlled vector fields (Gj(·, u))j=1,...,m verifies by
definition the so-called compatibility conditions that guarantee in-
tegrability of the so built system of partial derivatives (see [19]). In
the multi-input case, (4) generalizes as

F (x, u) = F0(x) +

m∑
i=1

∫ ui

0
Gi(x+(wi),wi)dwi (6)

with wi
= (u1, . . . , ui−1, wi, 0, . . . , 0).

As discussed through several contributions (e.g., [20,21]), the
(Gj(·, u))j=1,...,m provide a differential geometric apparatus to ana-
lyze and formulate in an elegant way the properties of nonlinear
discrete-time dynamics and their associated flows. Some of the
aspects that are instrumental in the present context are recalled
below whenm = 1 with intuitive extension tom > 1.

At first, given G(·, u), one defines AdF0G(·, u) as its transport
along the drift term F0(·) as (see [19,21])

AdF0G(x, u) := [∇xF0(x)]F−1
0 (x)G(F

−1
0 (x), u). (7)

Iteratively, one sets AdiF0G(x, u) := AdF0 ◦ Adi−1
F0

G(x, u) with Ad0F0
G(x, u) := G(x, u).
Given any smoothmapping S(·) : Rn

→ R, a useful outcome of the
(F0,G)-representation is to split the evolution of S(·) along the dy-
namics (2) into the free (or uncontrolled) and forced contributions;
namely, one writes

S(F (x, u)) = S(F0(x)) +

∫ u

0
LG(·,v)S(x+(v))dv. (8)

This is useful in the definition of u-average passivity that is recalled
below [16].

3.2. u-average passivity and stabilization

Thenotion ofu-average passivityhas been introduced in discrete
time in [16]. First, consider the case of a single-input system
(i.e., whenm = 1).

Definition 3.1. Σd with u ∈ R and output H(·) is u-average passive
(or average passive) if there exists a positive semi definite function
S(·) : Rn

→ R≥0, the storage function, such that for any pair
(xk, uk), k ≥ 0, one verifies the inequality

S(F (xk, uk)) − S(xk) ≤ Hav(xk, uk)uk (9)

where Hav(x, u) denotes the u-average output mapping associated
with H(x); i.e.

Hav(x, u) :=
1
u

∫ u

0
H(x+(v))dv

with Hav(x, 0) = H(x+(0)) = H(F0(x)).
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