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A B S T R A C T

The design of vibration control devices requires an accurate knowledge of the dynamic behavior of the system to
be controlled. The present work aims to propose a methodology to identify a single degree-of-freedom nonlinear
system with cubic stiffness and a methodology for the optimum design of a viscoelastic dynamic absorber with
linear behavior, intending to reduce the vibrations of the cubic system to as low a level as possible. The iden-
tification is performed through an inverse process. The nonlinear model with cubic stiffness used in this work
produces a transmissibility curve which is fitted using the least squares method to the experimentally obtained
transmissibility curve. With the identified physical parameters of the nonlinear system, a viscoelastic dynamic
vibration absorber is optimally designed. To achieve these goals, the following tools are employed: the concept
of generalized equivalent parameters, to couple the viscoelastic dynamic absorber to the nonlinear system; the
four-parameter fractional derivative model, to represent the viscoelastic material; and nonlinear optimization
techniques and the harmonic balance method to solve the nonlinear equation of motion. Numerical simulations
and the corresponding physical implementation of the system are carried out and their results are compared.

1. Introduction

Nonlinear dynamical systems have been intensively studied in re-
cent decades by several researchers. Among them it is possible to
mention the works by Nayfeh and Mook [1], Worden and Tomlinson
[2], and Thomsen [3]. Several nonlinear systems have been studied by
different analytical and numerical means and by employing different
methods of solution as, for example, the harmonic balance method, the
multiple scales method, the averaging method, and the Volterra series.
More recently, Johannessen [4] describes an analytical method of so-
lution for a Duffing oscillator with damping, assuming a solution using
the Jacobi elliptic functions. In a two degree-of-freedom system
(2DOF), Gatti et al. [5], Gatti et al. [6] use the harmonic balance
method and the averaging method to verify the interaction at the re-
sonances of a nonlinear system with a linear structure to which the
former is coupled.

The study of nonlinearities also includes the development of models
of isolators, as shown in the work by Ravindra and Mallik [7], in which
the insulator is patterned with nonlinear stiffness and damping. In order
to increase passenger’s comfort, Silveira et al. [8] show the positive
results of using bilinear dampers in vehicles. Other examples are the
contributions by Peng et al. [9], who apply the harmonic balance

method (MHB) to check the influence of cubic nonlinearities on the
transmissibility; and Xiao et al. [10], who study a model with cubic
nonlinear damping, which is a function of both velocity and displace-
ment. Other nonlinearity sources in physical systems are: piezoelectric
materials with nonlinear relationship between stress-strain and electric
field displacement [11,12], rotating systems in which nonlinearity
stems from the reaction force of a bearing [13], and systems in which
the interaction between cable and beam generates nonlinearity [14].

It is stressed that nonlinearities can simply appear due to the so
called Sommerfeld effect, as studied in Balthazar et al. [15]. In this
study, fractional stiffness and damping nonlinearities are modeled for
non-ideal systems, such as portal frames. In addition, studies com-
prising multiple degree-of-freedom systems are: Barry et al. [16], pre-
senting the study of a beam in which nonlinearity stems from the axial
stress and the same nonlinear spring; Gayesh et al. [17], studying a
beam with nonlinear springs and concentrated mass; Huang et al. [18],
focusing their study on a curved beam subjected to a uniform harmonic
excitation at the base; and Rudenko and Solodov [19], describing the
spread of vibration waves in nonlinear multiple degree-of-freedom
systems (n-DOF).

Vibration control is a very important matter since the presence of
undesirable vibrations in machines is very common. Ahmadabadi and
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Khadem [20] use a nonlinear dynamic vibration absorber (NDVA) for
controlling the vibration of a beam. Gourdon et al. [21] control vi-
brations during earthquakes also using an NDVA. It is also possible to
control a system with a modification of the nonlinear characteristics by
using pole placement, as shown by [22,23]. The control of nonlinear
systems is studied by Ji and Zhang [24] by applying a dynamic vibra-
tion neutralizer to a nonlinear system. Sun et al. [25] present an ex-
perimental study of a vibration attenuation system with a primary
nonlinearity using a cubic NDVA working in parallel with a pendulum.
Bavastri et al. [26] and Febbo et al. [27] present a methodology for an
optimal design of viscoelastic dynamic vibration absorbers (VDVAs)
with linear behavior applied to cubic nonlinear systems and discuss the
influence of temperature on the detuning of these control systems, re-
spectively.

Dynamic vibration absorbers (DVAs) are extensively used in passive
vibration control for the sake of simplicity in construction and appli-
cation. DVAs are secondary mechanical devices coupled to another
mechanical system, called primary system, in order to reduce or control
vibration and noise in the primary system. They have been in use for a
long time in several applications such as the tipping control of vessels
[28], vibration control in unbalanced rotating systems [29], and re-
duction of vibration in cables excited by the wind [30]. Since the first
known applications, many papers reporting their efficiency have been
presented.

A general theory for the optimization of DVAs in various geometries
of generic structures and any damping distribution is presented in
Espindola and Silva [31]. The theory is based on the concept of gen-
eralized equivalent mass and damping parameters for DVAs. Based on
such parameters, it is possible to describe the dynamics of a compound
system (DVA plus primary system) using only the generalized co-
ordinates (degrees of freedom) of the primary system. This is achieved
despite the additional degrees of freedom that the compound system
will have due to its coupling to the DVA. This theory has been suc-
cessfully applied, as reported Espindola et al. [32], Espindola et al.
[33], Espindola et al. [34], and Bavastri et al. [26].

Technological and scientific advances regarding viscoelastic mate-
rials make the construction of DVAs even simpler. The behavior of
viscoelastic materials is represented by mathematical models such as
the four-parameter fractional derivative model in which a few para-
meters can accurately represent the dynamic behavior [35–37]. Saidi
et al. [38] use a viscoelastic DVA (VDVA) formed by a mass and a
sandwich beam to reduce low frequency vibration in floors. Balthazar
et al. [39] studied a non-ideal Duffing system with fractional damping
applied to an oscillator, as an alternative damping model for the vis-
coelastic behavior. They found regular and non-regular motions of the
system, which are possibly useful from a passive control viewpoint.
Bavastri et al. [26], Doubrawa Filho et al. [40], and Espindola et al.
[33] successfully apply viscoelastic materials in the construction of
VDVAs wherein the viscoelastic material is responsible both for stiffness
and damping.

For vibration control it is important to know the primary system.
One of the most established methods generally applied to linear systems
is known as ‘inverse problem of identification’. In this process, system
curves are obtained experimentally in order to find out the physical
parameters that characterize the associated systems. Procedures such as
nonlinear optimization techniques are generally intended to identify
such parameters. Although less generic, parametric methods may also
be used. For example, Malaktar and Nayfeh [41] perform a parametric
identification of a beam with cubic geometry and compare it with the
result of the identification made by nonlinear optimization.

In the present work, we present a global methodology to the optimal
design of a viscoelastic dynamic absorber to reduce the vibration levels,
in a broad band of frequency, for a cubic nonlinear primary system,
considering the identification of the primary system and the optimal
design of the absorber. In this sense, the authors consider the following
points as original contributions:

• The utilization of the Generalized Equivalent Parameters (GEPs) to
model a compound system -cubic nonlinear primary system plus a
viscoelastic dynamic vibration absorber (VDVA). That allows the
description of the dynamics of the compound system only as a
function of the coordinates of the nonlinear primary system, thus
simplifying the mathematical formulation of the problem using the
transmissibility function.

• The implementation of a methodology to identify a cubic nonlinear
primary system based on sweep-up and sweep-down transmissibility
curves at constant acceleration, using nonlinear optimization tech-
niques.

• The implementation of a methodology to optimize the VDVA at-
tached to the cubic nonlinear primary system applying the GEPs
model.

• The realization of the physical systems and the validation of the
theoretical findings with experimental results.

The paper is structured as follows. First, the mathematical for-
mulation of the primary system based on the complex transmissibility
function of the primary system, regarding the base excitation phase, is
introduced. Then, a review of the mathematical model of the compound
system, based on a previous work by Bavastri et al. [26] using GEPs
model, is presented. A global methodology to apply a VDVA in a cubic
nonlinear primary system, considering the identification of the primary
system and the optimal design of the absorber, is detailed in the fol-
lowing section. Experimental results are then presented, including the
identification of the SDOF cubic nonlinear system and the application of
the optimally designed VDVA to mitigate the vibrations of the primary
system. These results are compared to their numerical counterparts and
discussed. Finally, some concluding remarks are provided.

2. Mathematical formulation

In Bavastri et al. [26], the mathematical model used to obtain the
dynamic response of an optimum viscoelastic absorber attached to a
cubic nonlinear system is obtained using the method of generalized
equivalent parameters. Here, to enable the use of experimental data, a
corresponding expression based on the estimation of transmissibility is
obtained in order to, first, identify the parameters of the cubic non-
linear system and, second, model the compound system (primary
system and absorber).

2.1. Primary system

An SDOF cubic nonlinear system is schematically presented in
Fig. 1.

Fig. 1. Cubic nonlinear system excited by its base.
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