Euler sums and Stirling sums

Weiping Wang *, Yanhong Lyu

School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

Article info

Article history:
Received 12 May 2017
Received in revised form 2 August 2017
Accepted 6 August 2017
Available online xxxx
Communicated by S.J. Miller

MSC:
40A25
11B73
11B83
11M06
05A15

Keywords:
Euler sums
Stirling sums
Bell polynomials
Generating functions
Riemann zeta function

Abstract

In this paper, using the Bell polynomials and the methods of generating function and integration, we establish various mixed Euler sums and Stirling sums, and present a unified approach to determining the evaluations of unknown Euler sums. As a result, we give the values of two Euler sums of weight 6, six sums of weight 7, twelve sums of weight 8, and twenty sums of weight 9. Thus, all the Euler sums of weights \{6, 7, 9\} can be reduced to zeta values, and all the Euler sums of weight 8 can be reduced to linear sum $S_{2,6}$ and zeta values.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: wpingwang@yahoo.com, wpingwang@zstu.edu.cn (W. Wang).

https://doi.org/10.1016/j.jnt.2017.08.037
0022-314X/© 2017 Elsevier Inc. All rights reserved.
1. Introduction

The generalized harmonic numbers are defined by

\[H_n^{(r)} = 0 \quad \text{and} \quad H_n^{(r)} = \sum_{k=1}^{n} \frac{1}{k^r} \quad \text{for } n, r = 1, 2, \ldots. \]

When \(r = 1 \), they reduce to the classical harmonic numbers, denoted as \(H_n = H_n^{(1)} \). Harmonic numbers are important in various branches of combinatorics and number theory, and they also frequently appear in the analysis of algorithms and expressions of special functions.

In response to a letter from Goldbach in 1742, Euler considered sums of the form

\[S_{p,q} = \sum_{n=1}^{\infty} \frac{H_n^{(p)}}{n^q}, \]

where \(p \) and \(q \) are positive integers with \(q \geq 2 \) (see Berndt [3, p. 253]). These sums are called the linear Euler sums today. Euler discovered that in the cases of \(p = 1, p = q, p + q \) odd, \(p + q \) even but with the pair \((p, q)\) being restricted to the set \:\{\(2, 4\), \(4, 2\)\},\ the linear sums have evaluations in terms of zeta values, i.e., the values of the Riemann zeta function \(\zeta(s) = \sum_{k=1}^{\infty} 1/k^s \) at the positive integers. In particular, he proved that

\[S_{1,q} = \sum_{n=1}^{\infty} \frac{H_n}{n^q} = \left(1 + \frac{q}{2}\right) \zeta(q + 1) - \frac{1}{2} \sum_{k=1}^{q-2} \zeta(k + 1) \zeta(q - k). \]

By specifying the parameter \(q \), various special sums can be computed. For example, we have

\[S_{1,6} = \sum_{n=1}^{\infty} \frac{H_n}{n^6} = 4\zeta(7) - \zeta(3)\zeta(4) - \zeta(2)\zeta(5). \]

Euler also extrapolated the general formula of \(S_{p,q} \) for the case of \(p + q \) odd, which was verified by Borwein et al. [5] in 1995 (see also [19, Theorem 3.1]). A typical example is

\[S_{3,4} = \sum_{n=1}^{\infty} \frac{H_n^{(3)}}{n^4} = 18\zeta(7) - 10\zeta(2)\zeta(5). \]

Different from the linear sums, the nonlinear Euler sums involve products of at least two harmonic numbers. As showed by Flajolet and Salvy [19], the linear and nonlinear Euler sums can be defined in a unified way. Let \(\pi = (\pi_1, \pi_2, \ldots, \pi_k) \) be a partition of integer \(p \) into \(k \) summands, that is, \(p = \pi_1 + \pi_2 + \cdots + \pi_k \) and \(\pi_1 \leq \pi_2 \leq \cdots \leq \pi_k \). The Euler sum of index \((\pi, q)\) is
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات