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Weak solutions to non-homogeneous boundary value

problems for time-fractional diffusion equations

Masahiro Yamamoto ∗

Abstract

We discuss an initial-boundary problem for a time-fractional diffusion equa-

tion with non-zero Dirichlet boundary values which belong to L2 in time t and

to a Sobolev space of negative order in space and prove the unique existence of

weak solutions and a priori estimates. The proof is based on the Caputo frac-

tional derivative in Sobolev spaces and the transposition method. We show one

application to the existence of solution to an optimal control problem.

§1. Introduction

Let Ω ⊂ R
n be a bounded domain with boundary ∂Ω of C2-class and let ν = ν(x) =

(ν1, ..., νn) be the unit outward normal vector to ∂Ω at x. In this paper we consider an

initial-boundary problem for a time-fractional diffusion:

∂α
t u(x, t) = −Lu(x, t), x ∈ Ω, 0 < t ≤ T, (1.1)

u(x, t) = g(x, t), x ∈ ∂Ω, 0 < t < T, (1.2)

u(x, 0) = 0, x ∈ Ω. (1.3)

Throughout this paper, we assume 0 < α < 1, and by ∂α
t u, we denote the Caputo

derivative, which can be defined for w ∈ C1[0, T ] by

∂α
t w(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αdw

ds
(s)ds, 0 < t ≤ T, 0 < α < 1, (1.4)
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