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a b s t r a c t 

The blind source separation model for multivariate time series generally assumes that the observed series 

is a linear transformation of an unobserved series with temporally uncorrelated or independent compo- 

nents. Given the observations, the objective is to find a linear transformation that recovers the latent 

series. Several methods for accomplishing this exist and three particular ones are the classic SOBI and 

the recently proposed generalized FOBI (gFOBI) and generalized JADE (gJADE), each based on the use 

of joint lagged moments. In this paper we generalize the methodologies behind these algorithms for 

tensor-valued time series. We assume that our data consists of a tensor observed at each time point 

and that the observations are linear transformations of latent tensors we wish to estimate. The tensorial 

generalizations are shown to have particularly elegant forms and we show that each of them is Fisher 

consistent and orthogonal equivariant. Comparing the new methods with the original ones in various 

settings shows that the tensorial extensions are superior to both their vector-valued counterparts and 

to two existing tensorial dimension reduction methods for i.i.d. data. Finally, applications to fMRI-data 

and video processing show that the methods are capable of extracting relevant information from noisy 

high-dimensional data. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Blind source separation and time series 

In the classical blind source separation (BSS) model one assumes 

that the observed random vectors x i , i = 1 , . . . , n, are linear trans- 

formations of some latent vectors of interest, x i = �z i , where � ∈ 

R 

p×p is a full rank mixing matrix . Coupling the model with differ- 

ent sets of assumptions on z i gives various well-known models: (i) 

assuming that z i are i.i.d. and have mutually independent compo- 

nents yields the independent component (IC) model, see e.g. [15] ; (ii) 

assuming z i are i.i.d. and have spherical distribution yields an el- 

liptical model for x i [36] and (iii) as a special case of both previous, 

assuming that z i are i.i.d. and have standard Gaussian distribution 

yields the general multivariate Gaussian distribution for x i . 

In the context of time series it is natural to incorporate the time 

dependency of the data into the model structure and a commonly 

used BSS model [3] assumes that the observed series x t is gener- 
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ated as 

x t = �z t , t = 0 , ±1 , ±2 , . . . , (1) 

where the latent time series z t satisfies the following three as- 

sumptions. 

( V1 ). E[ z t ] = 0 

( V2 ). cov [ z t ] = I 

( V3 ). E[ z t z 
T 
t+ τ ] = E [ z t+ τ z T t ] = D τ is diagonal for all τ = 1 , 2 , . . . . 

Without loss of generality, (V1) implies that the observed se- 

ries is centered and (V2) fixes the scales of the columns of �. Af- 

ter these two assumptions we can still freely change the signs and 

order of the elements of z t and the corresponding columns of �
without altering the overall model. Thus the order and the signs of 

the latent series are unidentifiable which, however, is usually not 

a problem in practice. (V1)–(V3) together also imply that the time 

series z t and x t are weak second-order stationary and x t satisfies 

E [ x t ] = 0 and Cov [ x t ] = ��T 
. 

BSS models for time series have become more and more popu- 

lar in the recent years. A partial explanation for this is that general 

multivariate time series models are very demanding both theoreti- 

cally and computationally and if one uses the BSS methodology as 

a preprocessing step the extracted sources can instead be further 

modelled separately using well-established univariate time series 
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methods. For some recent contributions following this type of ap- 

proach, see for example [6,11,12,18,28,35,52] . 

1.2. Tensor-valued methods for time series 

In the models discussed above a p -variate vector is observed at 

each time point. Modern data structures are however often more 

complex. For example, in many applications at each time point 

data might be observed which is better represented by a tensor. 

Such applications are for instance spatio-temporal data where at 

each time point usually a matrix is obtained or fMRI (functional 

Magnetic Resonance Imaging) data where for each time point a 

3-dimensional tensor is recorded. But also video clip data can be 

seen as a time series where each frame is a matrix- or tensor- 

valued observation, depending on the number of colors used. 

The most common approach to analyzing such data is to con- 

vert, following some convention, the tensor into a large vector 

and then apply standard multivariate methods for vector-valued 

data. Besides the often practical problem that the vectorized data 

might be of quite high dimension also information gets lost in this 

process. As for example [49] point out, after vectorizing the ten- 

sors the resulting vectors have a Kronecker structure. Ignoring this 

structure then means that a much larger number of parameters 

needs to be estimated. 

For i.i.d. data this has recently led to extensive research where 

methods either model the Kronecker structure or work directly 

with the tensors. For some recent work on structured multivariate 

estimation see for example [19,40,49,51] and references therein. 

For some recent contributions for i.i.d. tensor methods see for ex- 

ample [17,26,54,56] and references therein. 

Also independent component analysis (ICA) has already been 

considered in the context of tensors, some early works being 

[2,42,55] . A fully tensorial model-based approach was however 

only recently developed in [43,44] where tensorial versions of the 

well-known ICA methods Fourth order blind identification (FOBI) 

[8] and Joint approximate diagonalization of eigen-matrices (JADE) 

[9] were introduced. 

Methods for tensor-valued time series seem however not to 

have gotten much attention yet although some first steps are for 

example [1,38,47] . But to the best of our knowledge no tensorial 

BSS-methods for dependent data have been considered so far. To 

fill this gap, we propose in this paper tensor extensions for three 

BSS methods meant for multivariate time series. The first method 

is called the Second order blind identification (SOBI) [3] and is based 

on using second-order information in the form of autocovariance 

matrices to separate the hidden source series. As such it is best 

suited for multivariate linear processes and may not work with 

models having trivial autocovariances, like for example stochastic 

volatility models. The recently proposed second and third methods, 

generalized FOBI (gFOBI) and generalized JADE (gJADE), are the ex- 

act opposite and operate on the joint fourth-order moments of the 

component series, see [30] . Thus the successful use of either re- 

quires non-trivial higher moments, ruling out for example standard 

ARMA models. The tensorial extensions of these three methods are 

respectively called TSOBI, TgFOBI and TgJADE and are discussed in 

Section 4 . 

1.3. Structure of the paper 

In Section 2 we introduce the used notation and define vari- 

ous concepts of multilinear algebra needed in this paper. Although 

fairly easy to grasp and use, after we define the m -flattening of 

a tensor most tensor operations can be carried out conveniently 

in a matrix form. Section 3 reviews the theory of SOBI, gFOBI 

and gJADE and prepares the ground for their tensor versions in 

Fig. 1. Visualization of a tensor-valued time series. In the above scheme a matrix of 

the same size is observed at each time point and the resulting tensor-valued time 

series can be thought of as a video with frames corresponding to the individual 

observed matrices. 

Section 4 where the corresponding theory and algorithms are dis- 

cussed. In Section 5 we first use simulations to compare the pre- 

sented methods with their vector-valued counterparts for vector- 

ized data and then use the methods to process simulated fMRI- 

data and a color video. In both applications the proposed method- 

ology is shown to extract the key elements of the signals in com- 

pressed form. In Section 6 we finally conclude with some discus- 

sion and the proofs are gathered in Appendix A . 

2. Notation and tensor algebra 

2.1. Notation in general 

Throughout the paper scalars are denoted by lower-case letters, 

a, b, c, . . . , vectors by lower-case boldface letters, a , b , c , . . . , matri- 

ces by capital boldface letters, A , B , C , . . . , and tensors of general 

order by capital blackboard letters, A , B , C , . . . (note that R still 

means the real line). The same convention on fonts is followed 

with random elements, but instead using the letters from the end 

of the alphabet, x, y, z , x , y , z , etc. 

2.2. Regarding matrices 

The standard basis vectors of R 

p are denoted by e i , i = 1 , . . . , p, 

and using them we can construct the matrices E 

i j := e i e 
T 
j 
, the only 

non-zero element of E 

ij being the single one as the element ( i, j ). 

We further make use of the following sets of p × p matrices: P, 

the set of all matrices with a single one in each row and column 

and rest of the entries zero; J , the set of all diagonal matrices 

with the diagonal entries equal to ± 1; D, the set of all diagonal 

matrices with positive diagonal elements and C, the set of all ma- 

trices C = PJD where P ∈ P, J ∈ J and D ∈ D. The sets P, J and 

D then respectively correspond to the sets of permutation matri- 

ces, heterogeneous sign-change matrices and heterogeneous scal- 

ing matrices. Finally, ‖ · ‖ is the Frobenius norm and by the equiv- 

alence A ≡ B we mean that A = PJB for some P ∈ P and J ∈ J . 

2.3. Regarding tensors 

To manipulate tensors we next provide some basic tools of 

multilinear algebra, see also [16] . By a tensor-valued time series 

X t we mean the set { X t } T t= −T of realisations of a tensor-valued 

stochastic process X t ∈ R 

p 1 ×···×p r on some fixed set of time points 

t = −T , . . . , T . That is, for each time point we observe a tensor of 

the same size, something akin to the frames of a video, see Fig. 1 

for a visual representation. 
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