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a b s t r a c t 

In this paper, the discrete-time quaternion-valued neural network with linear threshold activation func- 

tions is investigated. The sufficient conditions to the boundedness and global exponential periodicity of 

the neural network are obtained by using characteristic equation, Lyapunov functional and M -matrix. 

Simulation results illustrative the effectiveness of the conclusions obtained in this paper. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Processing multi-dimensional data is an important problem for 

artificial neural networks. The simplest form of multi-dimensional 

neural networks is complex-valued neural networks (CVNNs in 

short) where the complex number system is utilized to repre- 

sent two-dimensional data elements as a single entity. CVNNs 

play an important role in various engineering applications in- 

volving complex-valued data, such as adaptive signal process- 

ing, communication engineering and quantum mechanics, see 

[3,6,13,17,18,20,21,41] and the references therein. However for 

higher-dimensional data, we need a number system with higher 

dimensions, the so-called hypercomplex number systems. 

The quaternion, first described by Irish mathematician William 

Rowan Hamilton in 1843, is a four-dimensional hypercomplex 

number system that extends the complex numbers. Quaternions 

have great potential in three- and four-dimensional data modeling 

and have found application in the areas of engineering, including 

computer graphics [7,8,29] and robotics [9] . Representing high- 
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dimensional information, such as color and three-dimensional 

body coordinates, by quaternion-valued neurons are more efficient 

than complex-valued neurons or real-valued neurons. Thus the 

quaternion-valued neural network (QVNN in short) models, with 

quaternion-valued states, connections weights and activation func- 

tions were first proposed in [35] and studied in recent years, see 

[24,26,27,36] . 

QVNNs are much more complicated than CVNNs in the anal- 

ysis process. First difficulty is the non-commutativity of quater- 

nion multiplication. The Hamilton rules implies that the quater- 

nion multiplication is non-commutative. We will give the details in 

Section 2 . Second, the analyticity in quaternion field H is governed 

by the Cauchy–Riemann–Fueter (CRF) conditions and the general- 

ized Cauchy–Riemann (GCR) conditions [14,32] . According to these 

two conditions, globally analytical quaternion-valued functions are 

only linear functions and constants. Therefore, choosing appropri- 

ate quaternion-valued activation functions of QVNNs remains an 

challenge. To partially overcome this issue, a suboptimal solution 

in the form of a split nonlinear quaternion function that treats 

each channel separately (as a real channel) passed through a real 

smooth nonlinearity was employed in [1] . 

In recent decades, neural networks with linear threshold ac- 

tivation functions have found various applications in associative 

memory, winner-take-all and group selection, see [15,30,33,34] . 

The linear threshold functions are unsaturating piecewise linear 

functions that are more biologically plausible than sigmoid and 

limiter functions, see [10,11,19] . Compared with neural networks 
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with nonlinear activation functions, one advantage of the neural 

networks with linear threshold activation functions is that the 

network can be viewed as a linear system if each neuron’s output 

is always greater than or less than zero, and the neural networks 

with linear threshold activation functions will change one linear 

system to another similar linear system only when some neurons’ 

outputs switch on the zero boundary. 

The dynamics of recurrent neural networks, including bound- 

edness, stability, periodicity and synchronization, are frequently 

studied in recent years, see [5,12,13,16,23,25,37,41] etc. When 

implementing the continuous-time neural networks for simula- 

tion, experimentation or computation, it is essential to construct 

a discrete-time neural network which is an analogue of the 

continuous-time neural network. Some researchers have discussed 

the significance for discrete-time analogues to reflect the dynam- 

ics of their continuous-time counterparts [28,31] . It is usually 

expected that the discrete-time analogue inherit the dynamical 

characteristics of the continuous-time delayed neural networks. Al- 

though there are numerous ways of obtaining discrete-time neural 

networks from continuous-time systems, most of the discrete-time 

neural networks do not faithfully preserve the dynamics of their 

continuous-time versions. As pointed out in [22] , the discretization 

cannot preserve the dynamics of the continuous-time counterpart 

even for a small sampling period, and therefore there is a crucial 

need to study the dynamics of discrete-time neural networks. The 

dynamics of both real-valued neural networks and CVNNs with 

linear threshold activation functions have been investigated in 

[13,38–40,42,43] . However, to the best of our knowledge, there 

are few works on the dynamical analysis on discrete-time QVNNs 

with linear threshold activation functions. 

Motivated by the above discussion, in this paper we aim to 

study the boundedness and periodicity for discrete-time linear 

threshold quaternion-valued neural network with time-delays. The 

rest of the papers is organized as follows. In Section 2 , the quater- 

nion algebra is introduced as well as the model description and 

some useful definitions and lemmas. In Section 3 , the sufficient 

conditions for the boundedness and periodicity of the proposed 

QVNN models are obtained. In Section 4 , we provide two numer- 

ical examples to illustrate the effectiveness of the results. Conclu- 

sions are given in Section 5 . 

2. Preliminaries 

2.1. Quaternion algebra 

Quaternions are an associative algebra defined over R , where 

the quaternion number q is given by 

q = q R + q I ı + q J j + q K κ

where q R , q I , q J , q K ∈ R and ı, j , κ are both orthogonal unit vectors 

and imaginary units. The imaginary units ı, j , κ obey the following 

Hamilton rules {
ıj = κ; jκ = ı ;κ ı = j ;
ı 2 = j 2 = κ2 = ıjκ = −1 . 

(1) 

which implies the non-commutativity of the quaternion multipli- 

cation. 

The operations between quaternions, p = p R + p I ı + p J j + p K κ
and q = q R + q I ı + q J j + q K κ, are defined as follows. The addition 

and subtraction of quaternions are defined similarly as those of 

complex numbers, by 

p ± q = (p R ± q R ) + (p I ± q I ) ı + (p J ± q J ) j + (p K ± q K ) κ

According to Hamilton multiplication rules (1) , the product of p 

and q is defined as 

pq = (p R q R − p I q I − p J q J − p K q K ) 

+ (p R q I + p I q R + p J q K − p K q J ) ı 

+ (p R q J + p J q R − p I q K + p6 K q I ) j 

+ (p R q K + p K q I + p I q J − p J q I ) κ. 

The module for a quaternion q = q R + ıq I + jq J + κq K ∈ H , de- 

noted by | q |, is defined as 

| q | = 

√ 

(q R ) 2 + (q I ) 2 + (q J ) 2 + (q K ) 2 . 

In this paper, the vector norm || q || 1 and || q || ∞ 

(simply denoted 

as || q ||) of a quaternion vector q = (q 1 , q 2 , . . . , q n ) 
T ∈ H 

n is defined 

as 

|| q || 1 = 

n ∑ 

i =1 

(| q R i | + | q I i | + | q J 
i 
| + | q K i | ) , || q || ∞ 

= max 
1 ≤i ≤n 

{| q i |} . 

2.2. Model description 

In this paper, we investigate a class of discrete-time linear 

threshold QVNNs with time delays described by the following non- 

linear discrete equation 

q (k + 1) = −Dq (k ) + A f (q (k )) + B f (q (k − τ )) + u (k ) (2) 

where q (k ) = (q 1 (k ) , q 2 (k ) , . . . , q n (k )) T ∈ H 

n is the state vector, 

D = diag (d 1 , d 2 , . . . , d n ) ∈ R 

n ×n with d i > 0 (i = 1 , 2 , . . . , n ) is the 

self-feedback connection weight matrix, A = (a i j ) n ×n ∈ H 

n ×n 

and B = (b i j ) n ×n ∈ H 

n ×n are, respectively, the connection 

weight matrix without and with time delays, f (q (k )) = 

( ̃  f (q 1 (k )) , ˜ f (q 2 (k )) , . . . , ˜ f (q n (k ))) T : H 

n → H 

n is a quaternion- 

valued activation function where ˜ f (·) : H → H is defined as 

˜ f (q ) = σ (q R ) + σ (q I ) ı + σ (q J ) j + σ (q K ) κ, q ∈ H (3) 

and since, as stated in the introduction, the linear threshold func- 

tions σ (·) : R → R are unsaturating piecewise linear functions, σ ( ·) 
is usually defined as (see [13,38,43] , etc.) 

σ (x ) = max { 0 , x } , x ∈ R (4) 

and τ > 0 is the constant time delay, u (k ) = 

(u 1 (k ) , u 2 (k ) , . . . , u n (k )) T ∈ H 

n is the external input vector-valued 

function with period ω. 

Definition 1. The neural network (2) is said to be bounded if each 

of its trajectories is bounded. 

Definition 2. The state vector q ( k ) of QVNN (2) is said to be glob- 

ally exponentially stable at a period orbit ˆ q (k ; k 0 , ˆ φ) if there exist 

constants α > 0 and β > 0 such that ∀ k ≥ k 0 , 

|| q (k ; k 0 , φ) − ˆ q (k ; k 0 , ˆ φ) || ≤ β|| φ − ˆ φ|| k 0 exp {−α(k − k 0 ) } 
where q ( k ; k 0 , φ) is the state of (2) with an arbitrary initial condi- 

tion φ and ˆ q (k ; k 0 , ˆ φ) is an orbit of (2) with a certain initial con- 

dition 

ˆ φ, || · || k 0 is some appropriate quaternion module. 

Lemma 1. For any quaternion q ∈ H and function ˜ f (q ) defined in (3) , 

we have 

| ̃  f (q ) | ≤ | q | . 
Proof. Obviously, for σ ( ·) defined in (4) , we have 

| σ (x ) | = | max { 0 , x }| ≤ | x | , x ∈ R . 

then we have 
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