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Abstract: This paper focuses on the discrete-time sliding-mode control problem, that is, given
an uncertain linear system under the effect of external matched perturbations, to design a set-
valued control law that achieves the robust regulation of the plant and at the same time reduces
substantially the chattering effect in both the input and the sliding variables. The cornerstone
is the implicit Euler discretization technique together with a differential inclusion framework
which allow us to make a suitable selection of the control values that will compensate for the
disturbances. Numerical examples confirm the effectiveness of the proposed methodology.
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1. INTRODUCTION

There exists an extensive literature on discrete-time
sliding-mode control which, at this point, can be divided
into two groups. In one group we have the works that
rely on discontinuous control actions, as for example Bar-
toswewicz [1998], Galias and Yu [2007], Gao et al. [1995],
Kaynak and Denker [1993], Spurgeon [1991]. The sliding-
mode control law is discretized using an explicit Euler
technique and is limited by the condition that the ideal
sliding-mode is never reached, leading to concepts such
as quast sliding, a term that refers to the fact that the
system trajectories will ultimately belong to a bound-
ary layer of the sliding manifold even in the absence of
disturbances. The main problem with the discontinuous
control approach is the susceptibility to the appearance of
chattering. Indeed, at a point of discontinuity the control
law cannot take values lying between its different limits,
so a high frequency switching becomes necessary for main-
taining the system in the sliding phase [Utkin 1992]. It
is thus not surprising to see considerably high levels of
chattering in these schemes.

The central idea among the second group of controllers
is that, similar to the differential inclusions described in
the work of Filippov and Arscott [1988], the discrete-time
system should be governed by a difference inclusion, not
a difference equation [Acary and Brogliato 2010, Acary
et al. 2012, Huber et al. 2016b,c]. These works are based
on the use of set-valued control laws for which a selection
compensating the matched disturbances is possible.

In practical terms, the difference between both approaches
lays on the type of discretization used. Whereas the
former group employs an explicit Euler discretization, the

second one employs an implicit one. In the latter case, the
resulting controller turns out to be Lipschitz continuous,
which results in a substantial reduction of chattering,
Huber et al. [2016b,c], Wang et al. [2015].

The present work falls into the second group and is dedi-
cated to the study of uncertain systems, i.e., we consider
the case where the system matrices are uncertain. The
class of uncertainty considered is large enough to embrace
parametric uncertainty as well as nonlinear unmodeled
dynamics and external perturbations. It is also worth
remarking that the works by Acary and Brogliato [2010],
Acary et al. [2012], Huber et al. [2016b,c] do not consider
uncertainty in the system parameters.

The paper is organized as follows: Section 2 sets the
notation and recalls some concepts from convex analysis.
Section 3 presents, very shortly, the design of continuous-
time sliding-mode controllers for systems with model un-
certainty and external matched disturbances. Section 4
constitutes the main body of the paper. Here, the method-
ology design of discrete-time sliding mode controllers is
presented together with well-posedness and stability re-
sults. Finally, Section 5 shows the effectiveness of the
proposed controller and its superior performance when
compared against explicit Euler discretization techniques.

2. PRELIMINARIES AND NOTATION

Let R™ be a n-dimensional linear space, given with the
classical Euclidean inner product denoted as (-,-) and the
corresponding norm || - ||.

Definition 1. Let f : R™ — RU{+400} be a proper, convex,
lower semicontinuous function. The subdifferential of f at
x € Dom f is given by the set
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Of(x) ={CeR"[((;n—a) < f(n) — (=),
for all n e R"}.
Definition 2. Let f : R™ — R U {400} be a proper,
convex, lower semicontinuous function. The proximal map
Prox; : R" — R™ is the unique minimizer of f(w)+ &z —
w||?, that is,

f(Proxy(z)) + %Hx — Proxs(z)|* =

. 1 2
nin { £w) + 3llo ~ ol |
Note that for W¢, the indicator function of the set C,
the proximal map corresponds to the well-know projection
operator, see Hiriart-Urruty and Lemaréchal [1993]. The
following result, extracted from [Bauschke and Combettes
2011, Proposition 12.26], establishes a link between the
two former concepts.

Proposition 3. Let f: R™ — RU {+oco} be a proper, con-
vex, lower semicontinuous function. Then, p = Prox;(z)
if, and only if, x —p € 0f(p).

Remark 4. It follows from Proposition 3 that the map
(I +adf )_1 is singled valued. More specifically, Prox, s =

I+ oz(?f)fl. Indeed, assume that y;, i = 1,2 are such that
yi € (I + adf)~1(z). We have, x — y; € adf(y;), i = 1,2.
Hence, Proposition 3 gives y1 = y2 = Prox,s(z).

In the upcoming discussion the conjugate function f* of a
proper function will play an important role. Here we recall
its definition.

Definition 5. Let f : R® — R U {+o0o}. The conjugate of

fis,
f(z) = sup {(z,2) — f(2)}.
TER™
Theorem 6. (Moreau’s decomposition). Let f: R" - RU
{+0o0} be a proper, convex, lower semicontinuous function
and let o € R be strictly positive. Then, for any z € R",
the following identity holds:

r = Proxas(v) + aProxs. o (z/a).

Along this paper we denote the identity matrix in R™*™
as I,,. The set B, := {z € R" | |lz|| < 1} represents
the unit open ball with center at the origin in R™ with
the Euclidean norm. The interior, closure, and boundary
of a set S C R™ are denoted as intS, clS, and bdS
respectively.

3. A QUICK REVIEW OF CONTINUOUS-TIME
SLIDING-MODE CONTROL

We begin with a quick look at the continuous-time sliding-
mode control problem. To this end, let us consider the
uncertain plant

= (A+A4(t, x))z(t)+Bu(t)+w(t, ), 2(0) =xq, (1)
where x(t) € R™ represents the state of the system, u(t) €
R is the scalar control input and w(t,z) € R accounts
for external disturbances and unmodeled dynamics. The
matrices A, As and B are of the appropriate dimensions.
It is assumed that the matrix A (¢, x) is unknown but is
uniformly upper-bounded by

Aa(t,2)AA)(t,x) < T, (2)
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with A = AT > 0 a known matrix. We also make the
following standard assumptions.

Assumption 7. The pair (A, B) is stabilizable.

Assumption 8. The disturbance term w(t, ) is uniformly
bounded in the £ sense, that is, there exists W > 0 such
that sup,> |w(t, z)|| < W < 4o0.

The first step in the design of sliding-mode controllers
consists in fixing the sliding surface o(x) = 0 in such
a way that the behaviour of the system constrained to
the sliding surface satisfies the performance requirements.
The second step consists in the design of the control
law that will steer the state towards the sliding surface
and will maintain it there, even in the presence of model
uncertainties and external disturbances. An assumption
concerning the sliding surface is the following.

Assumption 9. The matrix C € R' " is such that the
product CB is nonsingular.

The previous assumption ensures the uniqueness of the
equivalent control (see, e.g. Utkin et al. [2009]). Namely, by
considering the sliding surface as the hyperplane o = C'r,
the equivalent control is computed from the invariance
condition ¢ = 0 as

C(Az°d + B(ud 4+ w)) + Aa(t, 2°%)2%) = 0 =
ueq = —(CB)_IC (Aweq + AA(ta meq)xeq) - w.

Substitution of the equivalent control into (1) leads to the
expression of the dynamics in sliding phase,

i1 = (I = BCB)'C) (A + Aa(t,a*))at,  (3)

from which it becomes clear that the matrix characterizing
the sliding hyperplane plays a role in the reduced system
dynamics. There exists many methods for the design of
the sliding surface, e.g., LQR design [Utkin 1992, Chapter
9], eigenvalue placement [Utkin et al. 2009, Chapter 7],
Hoo control [Castafios and Fridman 2006], linear matrix
inequalities [Polyakov and Poznyak 2011], see also [Shtessel
et al. 2014, Section 2.4.2], among others. Here we relegate
the design of the sliding surface in continuous time to the
background and focus instead on the discrete-time setting.
As mentioned above, the second step consists in designing
the set-valued control law that will bring the system into
the sliding regime. The design procedure is divided into
two steps. Namely, first we compute a control law for the
nominal version of (1) (i.e., A4 =0 and w = 0) and then
the set-valued controller that will provide the necessary
robustness. Thus, the control law is set as

- m(z) Sgn(o), (4)

where u"°™ is a control input for the nominal system and
v : R™ — R, is a control gain. It is worth remarking
that the trajectories of the closed-loop (1), (4) will reach
the sliding surface ¢ = Cx in finite time, from where
the reduced system will go asymptotically to the origin
whenever the matrix C' is well-designed.

u = unom

In conclusion, the common methodology design for sliding-
mode controllers in continuous time relies on the appro-
priate design of the matrix C that will make the reduced
system asymptotically stable, whereas the set-valued con-
troller will compensate for all the matched disturbances.



ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


https://isiarticles.com/article/108733

