
Information Sciences 377 (2017) 51–74

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Model checking of linear-time properties in multi-valued

systems

�

Yongming Li a , ∗, Manfred Droste

b , Lihui Lei a

a College of Computer Science, Shaanxi Normal University, Xi’an, 710062, China
b Institute of Computer Science, Leipzig University, D-04109 Leipzig, Germany

a r t i c l e i n f o

Article history:

Received 27 March 2016

Revised 14 October 2016

Accepted 19 October 2016

Available online 19 October 2016

Keywords:

Model checking

Multi-valued transition system

Invariant

Safety

Liveness

Lattice-valued finite automaton

a b s t r a c t

In this paper, we study the model-checking problem of linear-time properties in multi-

valued systems. Safety properties, invariant properties, liveness properties, persistence

and dual-persistence properties in multi-valued logic systems are introduced. Some algo-

rithms related to the above multi-valued linear-time properties are discussed. The verifica-

tion of multi-valued regular safety properties and multi-valued ω-regular properties using

lattice-valued automata are thoroughly studied. Since the law of non-contradiction (i.e.,

a ∧ ¬ a = 0) and the law of excluded-middle (i.e., a ∨ ¬ a = 1) do not hold in multi-valued

logic, the linear-time properties introduced in this paper have new forms compared to

those in classical logic. Compared to those classical model-checking methods, our meth-

ods to multi-valued model checking are accordingly more direct: We give an algorithm for

showing TS |�P for a model TS and a linear-time property P , which proceeds by directly

checking the inclusion Traces (TS) ⊆ P instead of T races (T S) ∩ ¬ P = ∅ . A new form of multi-

valued model checking with membership degree is also introduced. In particular, we show

that multi-valued model checking can be reduced to classical model checking. The related

verification algorithms are also presented. Some illustrative examples and a case study are

also provided.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the last four decades, computer scientists have systematically developed theories of correctness and safety as well

as methodologies, techniques and even automatic tools for correctness and safety verification of computer systems; see

for example [1,33–34,43,47] . Of which, model checking has become established as one of the most effective automated

techniques for analyzing correctness of software and hardware designs. A model checker checks a finite-state system against

a correctness property expressed in a propositional temporal logic such as LTL (Linear Temporal Logic) or CTL (Computational

Tree Logic). These logics can express safety (e.g., “No two processes can be in the critical section at the same time”) and

liveness (e.g., “Every job sent to the printer will eventually print”) properties. Model checking has been effectively applied

to reasoning about correctness of hardware, communication protocols, software requirements, etc. Many industrial model

checkers have been developed, including SPIN [25] , SMV [44] .

� This work is supported by National Science Foundation of China (grant No: 11271237 , 61228305 , 11671244) and the Higher School Doctoral Subject

Foundation of Ministry of Education of China (grant No:20 0807180 0 05).
∗ Corresponding Author. Fax: 86 29 85310118.

E-mail addresses: liyongm@snnu.edu.cn (Y. Li), droste@informatik.uni-leipzig.de (M. Droste), leilihui@snnu.edu.cn (L. Lei).

http://dx.doi.org/10.1016/j.ins.2016.10.030

0020-0255/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ins.2016.10.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2016.10.030&domain=pdf
http://dx.doi.org/10.13039/501100001809
mailto:liyongm@snnu.edu.cn
mailto:droste@informatik.uni-leipzig.de
mailto:leilihui@snnu.edu.cn
http://dx.doi.org/10.1016/j.ins.2016.10.030

52 Y. Li et al. / Information Sciences 377 (2017) 51–74

Despite their variety, existing model checkers are typically limited to reasoning in classical logic. However, there are

a number of problems for which classical logic is insufficient. One of these is reasoning under uncertainty. This can oc-

cur either when complete information is not known or cannot be obtained (e.g., during ‘requirements’ analysis), or when

this information has been removed (abstraction). Classical model checkers typically deal with uncertainty by creating extra

states, one for each value of the unknown variable and each feasible combination of values of known variables. However,

this approach adds significant extra complexity to the analysis. Classical reasoning is also insufficient for models that con-

tain inconsistencies. Models may be inconsistent because they combine conflicting points of view, or because they contain

components developed by different people. Conventional reasoning systems cannot cope with inconsistency because the

presence of a single contradiction results in trivialization – anything follows from A ∧ ¬A . Hence, faced with an inconsistent

description and the need to perform automated reasoning, we must either discard information until consistency is achieved

again, or adopt a nonclassical logic. Multi-valued logic (mv-logic, in short) provides a solution to both reasoning under

uncertainty and under inconsistency. For example, we can use unknown and no agreement as logic values. In fact, model

checkers based on three-valued and four-valued logics have already been studied. For example, [8] (c.f., [46]) used a three-

valued logic for interpreting results of model-checking with abstract interpretation, whereas [24] used four-valued logics for

reasoning about abstractions of detailed gate or switch-level designs of circuits. For reasoning about dynamic properties of

systems, we need to extend existing modal logics to the multi-valued case. Fitting [20] explores two different approaches for

doing this: the first extends the interpretation of atomic formulae in each world to be multi-valued; the second also allows

multi-valued accessibility relations between worlds. The latter approach is more general, and can readily be applied to the

temporal logics used in model checking [12] . We use different multi-valued logics to support different types of analysis. For

example, to model information from multiple sources, we may wish to keep track of the origin of each piece of information,

or just the majority vote, etc. Thus, rather than restricting ourselves to any particular multi-valued logic, our approach is to

extend classical symbolic model checking to arbitrary multi-valued logics, as long as conjunction, disjunction and negation

of the logical values are well defined. M. Chechik and her colleagues have published a series of papers along this line, see

[8–10,12,13] .

Our purpose is to develop automata-based model-checking techniques in the multi-valued setting. More precisely, the

major design decision of this paper is as follows:

A lattice-valued automaton is adopted as the model of the systems. This is reasonable since classical automata (or equiv-

alent transition systems) are common system models in classical model checking. Linear-time properties of multi-valued

systems are checked in this paper. They are defined to be infinite sequences of sets of atomic propositions, as in the classi-

cal case, with truth-values in a given lattice. The key idea of the automata-based approach to model checking is that we can

use an auxiliary automaton to recognize the properties to be checked, and then combine it with the system to be checked

so that the problem of checking the safety or ω-properties of the system is reduced to checking some simpler (invariance or

persistence) properties of the larger system composed by the systems under checking and the auxiliary automaton. A differ-

ence between the classical case and the multi-valued case deserves a careful explanation. Since the law of non-contradiction

(i.e., a ∧ ¬ a = 0) and the law of excluded middle (i.e., a ∨ ¬ a = 1) do not hold in multi-valued logic, the present forms of

many classical properties in multi-valued logic must have some new forms, and some distinct constructions need to be

given in multi-valued logic.

As said in Ref. [2] , the equivalences and preorders between transition systems that “correspond” to linear temporal logic

are based on trace inclusion and equality, whereas for branching temporal logic such relations are based on simulation and

bisimulation relations. That is to say, the model checking of a transition system TS which represents the model of a system

satisfying a linear temporal formula ϕ, i.e., TS |�ϕ is equivalent to checking the inclusion relation Traces (TS) ⊆ P , where

Traces (TS) is the trace function of the transition system TS and P is the temporal property representing the formula ϕ. In

classical logic, we know that a ≤ b if and only if a ∧ ¬ b = 0 holds. Therefore, TS |�ϕ if and only if T races (T S) ∩ ¬ P = ∅ . Then,

instead of checking TS |�ϕ directly using the inclusion relation Traces (TS) ⊆ P , it is equivalent to checking the emptiness

of the language L (A) ∩ L (A ¬ ϕ) indirectly, where A is a Büchi automaton representing the trace function of the transition

system TS (i.e., L (A) = T races (T S)) , and A ¬ ϕ is a Büchi automaton related to temporal property ¬ϕ (i.e., L (A ¬ ϕ) = ¬ P).

In contrast, in mv-logic, a ≤ b is in general not equivalent to the condition a ∧ ¬ b = 0 , so the classical method to solve

model checking of linear-time properties does not universally apply to the multi-valued model checking. The available meth-

ods of multi-valued model checking ([9]) still used the classical method with some minor correction. That is, instead of

checking of TS |�P for a multi-valued linear time property P using the inclusion of the trace function Traces (TS) ⊆ P , the

available method only checked the membership degree of the language L (A) ∩ L (A ¬ P) , where A ¬ P is a multi-valued Büchi

automaton such that L (A ¬ P) = ¬ P . As we know, these two methods are not equivalent in mv-logic. Then, some new methods

to apply multi-valued model checking of linear-time properties based on trace inclusion relations need to be developed.

We provide new results along this line. In fact, we shall give a method of multi-valued model checking of linear-time

property directly using the inclusion of the trace function of TS into a linear-time property P . In propositional logic, we

know that we can use the implication connective → to represent the inclusion relation. In fact, in classical logic, we know

that the implication connective can be represented by disjunction and negation connectives, that is, a → b = ¬ a ∨ b. In this

case, we know that a ≤ b if and only if ¬ a ∨ b = 1 , if and only if a ∧ ¬ b = 0 , if and only if a → b = 1 . Then a natural problem

arises: how to define the implication connective in multi-valued logic? By the above analysis, it is not appropriate to use

the implication connective defined in the form a → b = ¬ a ∨ b to represent the inclusion relation in multi-valued logic. In

order to use the implication connective to reflect the inclusion relation in mv-logic, we shall use implication connective

https://isiarticles.com/article/108741

