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a b s t r a c t 

This paper talks about the global asymptotical synchronization problem of delayed fractional-order 

memristor-based complex-valued neural networks with uncertain parameters. Under the framework of 

Filippov solution and differential inclusion theory, several sufficient criteria ensuring the global asymp- 

totical synchronization for the addressed drive-response models are derived, by means of Lyapunov direct 

method and comparison theorem. In addition, two numerical examples are designed to verify the correct- 

ness and effectiveness of the theoretical results. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the past few years, complex-valued neural networks (CVNNs) 

have been applied to extensive practical applications, especially, in 

the fields of dealing with electromagnetic, filtering, ultrasonic, im- 

age processing, quantum waves, optoelectronics, speech synthesis, 

and other areas. As is well known, when compared with the real- 

valued neural networks (RVNNs), the states, connection weights 

and activation functions of CVNNs are all depicted in terms of 

complex-valued data, and the information processing process of 

CVNNs is realized on the complex plane [1] . Thus, CVNNs have 

much more complicated properties and can explore new capabil- 

ities and higher performance, which make it possible to dispose 

problems that cannot be solved with the real-valued counterparts. 

For example, a single complex-valued neuron with the orthogo- 

nal decision boundaries can be used to resolve such problems as 

the XOR problem and the detection of symmetry problem, while 

a single real-valued neuron could not be managed, which reveals 

the potent computational capabilities of complex-valued neurons 

[2,3] . Hence, it is of great importance to tackle the dynamics of 
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CVNNs deeply. In recent years, numerous results have been re- 

ported on the dynamical behaviors of CVNNs, see [4–13] and ref- 

erences therein. 

The concept of memristor which describes the relationship be- 

tween electric charge and magnetic flu was originally theorized by 

Chua [14] in 1971, and it was predicted as the fourth passive circuit 

element. In 2008, the prototype of practical memristor device was 

realized by scientists at the Hewlett-Packard Labs [15] . It is found 

that the memristor, a two-terminal element with variable resis- 

tance called memristance, has idiosyncratic circuit properties com- 

pared with the other circuit elements such as resistors, capacitors 

and inductors. The major superiority of the memristor is that the 

value of resistance depends on the magnitude and polarity of the 

voltage implemented in it and the time duration that the voltage 

has been applied, and also have the potentiality to remember the 

most recent resistance when the implemented voltage is turned 

off [16,17] . On the strength of these features, more and more re- 

searchers begin to pay their attention and increasing interest to 

analysis the properties of memristors, some of which have incor- 

porated the memristor into the integrated circuit design of neural 

networks named as memristor-based neural networks (MNNs), in 

which the resistor elements in the circuit have been replaced by 

memristors. Recently, the analysis of dynamics of MNNs has been 

a hot topic, and a considerable of excellent results have been re- 

ported in the literature, see [18–26] and references therein. 

https://doi.org/10.1016/j.chaos.2018.03.016 

0960-0779/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.chaos.2018.03.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.03.016&domain=pdf
mailto:xujunyangcquc@163.com
mailto:cdli@swu.edu.cn
mailto:tingwen.huang@qatar.tamu.edu
mailto:qiankunsong@163.com
mailto:hmomu@sina.com
https://doi.org/10.1016/j.chaos.2018.03.016


106 X. Yang et al. / Chaos, Solitons and Fractals 110 (2018) 105–123 

Fractional calculus, a generalization of ordinary differentiation 

and integration, did not attract much attention for ages due to 

lack of application background. Nowadays, fractional calculus has 

become an active research field since some researchers point out 

that many phenomena in various fields of science and engineering 

could be described by fractional calculus and fractional differen- 

tial equations, such as viscoelastic systems, stochastic diffusion, di- 

electric polarization, quantum mechanics, molecular spectroscopy, 

electrode-electrolyte polarization and electromagnetic waves. This 

mainly benefits from the fact that fractional-order derivatives pro- 

vide an excellent instrument for the description of memory and 

hereditary properties of various materials and processes [27,28] . 

In recent years, fractional derivative and integral have been inte- 

grated into neural network models to form fractional-order neu- 

ral network models. It is worth mentioning that the incorpora- 

tion of memory terms into neural networks is an extremely im- 

portant improvement. Thereupon, the analysis of dynamics on 

fractional-order neural networks (FNNs) has been become an in- 

creasing interest and growing area of research from then on, see 

[29–52,52] and references therein. Among which, the synchroniza- 

tion analysis of fractional-order neural networks has been captured 

wide attention. In [29,30] , projective synchronization and adap- 

tive synchronization of FMNNs were discussed. In [31] , by em- 

ploying linear delay feedback control, synchronization and anti- 

synchronization problems of fractional-order complex-valued neu- 

ral networks (FCVNNs) were concerned. In [32,34] , based on the 

concept of Filippov solution for FNNs in the sense of Caputos frac- 

tional derivation, authors investigated global Mittag–Leffler syn- 

chronization of fractional-order memristor-based neural networks 

(FMNNs) and global Mittag–Leffler synchronization of FNNs with 

discontinuous activations, respectively. In [41] , by applying Laplace 

transform and the generalized Gronwalls inequality, several suffi- 

cient criteria were deduced to ensure the finite-time synchroniza- 

tion for FMNNs. 

As is well-known, the exact values of parameters of the ad- 

dressed models are usually cannot obtained, the major reason for 

this is that the perturbations in the models and the disturbances 

in the environment always exist, which would cause parameter un- 

certainties. Effects of such parameter uncertainties should not be 

ignored in the analysis of dynamical behaviors of nonlinear sys- 

tems since they may derail the stability, synchronization or some 

other properties. Recently, many research literatures have focused 

on the synchronization of neural network model with parame- 

ter uncertainties, see [53–58] . In [53–57] , authors incorporated 

the uncertain parameters into the addressed models, and investi- 

gated the robust fixed-time synchronization of inter-order CVNNs, 

the adaptive exponential synchronization of integer-order Cohen- 

Grossberg CVNNs, robust synchronization of integer-order MNNs 

and lag stochastic synchronization of integer-order NNs, respec- 

tively. In [58] , synchronization of delayed FMNNs with unknown 

parameters were concerned. To our best knowledge, the param- 

eters of most previous literatures of fractional-order memristor- 

based complex-valued neural networks (FMCVNNs) are determin- 

istic. Few works have been done on the synchronization of FM- 

CVNNs with parameter uncertainties. 

Strongly motivated by the aforementioned discussions, the 

main objective of this paper is to investigate the problem of 

synchronization of delayed FMCVNNs with unknown parameters. 

Based on the fractional differential equations, complex-valued net- 

work theory and differential inclusion theory, the drive-response 

models of FMCVNNs with delays and parameter uncertainties will 

be established. Afterwards, by employing feedback control strat- 

egy and Lyapunov direct method, several sufficient criteria ensur- 

ing the global asymptotical synchronization for the concerned net- 

work models will be derived. Finally, numerical examples will be 

designed to verify the availability and feasibility of the theoretical 

results. The main contribution of this paper can be summarized 

in brief as follows: (1) the parametric uncertainties are brought 

into FMCVNNs. (2) the synchronization analysis of FMCVNN is pre- 

sented, and based on differential inclusion theory and Lyapunov di- 

rect method, some criteria ensuring the synchronization of the ad- 

dressed drive-response models are established. (3) compared with 

the exist results in the literature, the obtained main results are 

more general and less conservative. 

2. Model description and preliminaries 

Definition 1 [27] . The Caputo fractional derivative of order α for a 

function z(t) ∈ C n +1 [[0 , + ∞ ) , R ] (the set of all n -order continuous 

differentiable functions on [0 , + ∞ ) ) is defined as 

D 

αz(t) = 

1 

�(n − α) 

∫ t 

0 

( t − s ) n −α−1 z (n ) ( s ) ds, 

where α > 0, �(α) = 

∫ + ∞ 

0 e −t t α−1 dt, and n is the first integer 

greater than α, that is, n − 1 < α < n, and in particular, when 

0 < α < 1, one has 

D 

αz(t) = 

1 

�(1 − α) 

∫ t 

0 

( t − s ) −αz ′ ( s ) ds. 

Consider the following delayed fractional-order memristor- 

based complex-valued neural networks with unknown parame- 

ters 

D 

αz j (t) = −c j z j (t) + 

n ∑ 

k =1 

[ a jk (z k (t)) + �a jk (t)] f k (z k (t)) 

+ 

n ∑ 

k =1 

[ b jk (z k (t)) + �b jk (t)] g k (z k (t − τ )) + J j (t) , (1) 

where α ∈ (0, 1), t ≥ 0. z(t) = (z 1 (t) , z 2 (t ) , . . . , z n (t )) T , z j ( t ) repre- 

sents the complex-valued state variable associated with the j th 

neuron; c j > 0 stands for the decay rate coefficient; f k ( z k ( t )) and 

g k (z k (t − τ )) stand for the complex-valued activation functions of 

the k th unit at time t and t − τ, respectively; a jk ( z k ( t )) and b jk ( z k ( t )) 

denote, respectively, the synaptic connection weight of the k th 

unit to the j th unit at time t and t − τ ; �a jk ( t ) and �b jk ( t ) mean 

the deviation of a jk ( z k ( t )) and b jk ( z k ( t )), respectively; J j ( t ) denotes 

the bounded external input, and the memristor-based connection 

weights a jk ( z k ( t )) and b jk ( z k ( t )) satisfy 

a jk (z k (t)) = 

W jk 

C j 
× sgn jk , b jk (z k (t)) = 

M jk 

C j 
× sgn jk , 

sgn jk = 

{
1 , j � = k, 

−1 , j = k, 

in which W jk and M jk are the memductances of resistors R jk 

and F jk , R jk is the resistor between the feedback function f j ( z j ( t )) 

and z j ( t ), and F jk is the resistor between the feedback function 

g j (z j (t − τ )) and z j ( t ). 

The initial conditions associated with (1) are 

z j (h ) = ρ j (h ) + iδ j (h ) , h ∈ [ −τ, 0] . (2) 

In this paper, we will handle at discussing the drive-response 

synchronization, and the response system of (1) can be depicted 

as 

D 

αs j (t) = −c j s j (t) + 

n ∑ 

k =1 

[ a jk (s k (t)) + � ˜ a jk (t)] f k (s k (t)) 

+ 

n ∑ 

k =1 

[ b jk (s k (t)) + �˜ b jk (t)] g k (s k (t − τ )) 

+ J j (t) + W j (t) , (3) 
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