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1. Introduction

Complex-valued differential systems are an important class of dynamical systems whose solutions and unknown
functions are complex-valued functions. These systems are more difficult, complex and challenging than the real-valued
differential systems, although they can be considered as an extension of the real-valued ones. Complex-valued differential
systems have been drawing more and more attention benefiting from their brand-new applications in quantum mechan-
ics [1-7] and neural network [8-15] among others. By separating the complex-valued differential systems into a real part
and an imaginary part and transforming the n-dimensional complex-valued differential systems to the 2n-dimensional real-
valued differential systems, then combining the research method of real-valued differential systems, the stability and the
asymptotic behavior of the solution for complex-valued differential systems have been studied in [9,16-18]. In spite of
the apparent advantage resulting from abundant and powerful tools existing for the real analysis, there are two apparent
problems: (i) an explicit separation of a complex-valued function f(t, z) into a real part and an imaginary part is not always
possible; and (ii) the dimension of the real-valued system is double that of the complex-valued system, which leads to
difficulties in analysis [ 19]. Therefore, it is necessary to establish an effective method to overcome these problems. Recently,
Fang and Sun developed some methods to analyze the complex-valued systems, which retained the complex nature of the
systems and investigated their properties on C" [19].

On the other hand, impulsive dynamical systems have received much attention from researchers since they provide
a natural framework for mathematical modeling of many real world systems whose evolution in time undergo sudden
changes [20-22]. These systems have found important applications in various fields, such as dosage supply in pharma-
cokinetics [21], quantum measurements [23], orbital transfer of satellite [24], sampled-data control systems [25,26] and
networked control systems [27]. Massive outstanding achievements both on the theoretical analysis and the application of
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impulsive dynamical systems have been obtained [25-35]. Besides the impulsive effects, time delays exist widely in many
different areas of real world, which may cause oscillation, divergence, chaos, instability or other undesirable performances
in the system. Recently, many efforts have been devoted to study the stability and asymptotic behavior of real-valued
impulsive differential systems with delays, and many significant achievements have been reported [36-42]. Therefore, it is
necessary and natural to introduce impulsive and delay effect into complex-valued differential systems. More recently, some
interesting results on complex-valued impulsive differential systems have been reported. In [43], several stability conditions
of complex-valued impulsive system were established by the Lyapunov function in the complex fields. In [44], the existence
and uniqueness conditions of solutions of complex-valued nonlinear impulsive differential systems were acquired by fixed
point theory. In [45,46], using the Lyapunov functional method and the matrix inequality technique, several sufficient
conditions were obtained to guarantee the global exponential stability of impulsive complex-valued neural networks with
delays. In [47], a class of complex linear time-varying impulsive systems was studied, and some sufficient and necessary
conditions were derived for the state controllability and observability of the systems by the variation of parameters and
the algebraic approach. However, to the best of our knowledge, there has been no result so far about the exponentially
attractive set and the weak-invariant set of complex-valued nonlinear impulsive delay differential systems. Motivated by
the above considerations, the objective of this paper is to investigate the exponentially attractive set and the weak-invariant
set of complex-valued nonlinear impulsive delay differential systems by employing a combination of two inhomogeneous
differential inequalities and the theory of matrix measure.
Our contributions consist of the following three parts.

e The introduction of the definitions of exponentially attractive set, weak-invariant set and weakness degree for the
complex-valued impulsive delay differential system can be applied for the description of the asymptotic behavior of
the complex-valued impulsive delay differential system.

e Two inhomogeneous impulsive delay differential inequalities are established which are important and useful for
studying the asymptotic behavior of impulsive delay dynamical systems.

e We obtain the exponentially attractive set, weak-invariant set, and invariant set of the complex-valued nonlinear
impulsive delay differential systems by combining the inhomogeneous impulsive delay differential inequalities and
the matrix measure theory. Our results also hold when the complex-valued impulsive delay differential system
degenerates to the complex-valued impulses-free delay differential system.

The rest of the paper is organized as follows. Section 2 introduces some notations and definitions. Section 3 develops two
inhomogeneous impulsive differential inequalities. Based on the inhomogeneous differential inequalities, in combination
with the matrix measure theory, we obtain the exponentially attractive set, weak-invariant set and invariant set in Section 4.
Two examples that illustrate the main points of the paper are presented in Section 5. Section 6 draws conclusions.

2. Preliminaries

Throughout this paper, we adopt the following standard notations and definitions. Let E denote the n-dimensional unit
matrix, N = {1,2,3,...}, Rt = [0,00)andi = «/—1.Forz € C*and A € C™", let ||z|| be any vector norm, x and y
denote the real and the imaginary parts of z, respectively, and denote the induced matrix norm and the matrix measure,
respectively, by
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C[X, Y] denotes the space of continuous mappings from the topological space X to the topological space Y. PC[J, R"]
(PClI, C")={vr : T — R™C") |y (s) is continuous for all but at most countable points s € J and at these points s € J, ¥(s™)
and v (sT) exist, and ¥(s) = ¥(sT) } where J C R is an interval, ¥(s~) and ¥ (sT) denote the left-hand and right-hand limits
of the function /(s) at time s, respectively. Let D" ¢(t) denote the upper right-hand derivative of ¢(t) at time t.

In this paper, we consider the following impulsive nonlinear complex-valued system with time-varying delays:

z(t) = A(t)z(t) + B(t)z(t) + C(t)z(t — (t)) + D(t)z(t — t(t)) + f(t, z(t), z(t — (t)))

+g(t, z(t), z(t — «(t))), t # bk, t > to, (1)
Az = z(t;7) — z(t, ) = Hi(t)z(t, ), k €N,
Z(to + ) = ¢(s), s € [-7, 0],

where z € C" represents the state variable, z = x — iy is the conjugate of z, 7(t) is the time-varying delay function with
0 < t(t) < 7, T is a positive constant, A(t), B(t), C(t), D(t) € C[[tg, o0), C"™*"], H, € C™", g,f : [tp,00) x C" x C" — C"
are complex-valued continuous functions, the initial function ¢(s) = (¢1(s), . .., ¢u(s))" € PC[[—t, 0], C"], and the fixed
impulsive moments t(k € N)satisfytg = 0 < t; < tp < -+ <ty < tgpe1 < --- and limg_, ooty = oo. Throughout this
paper, we assume that for any ¢(s) € PC[[—1, 0], C"] with the norm [|¢||= sup_, _<ll¢(s)ll < oo, there exists at least one
solution of (1), which is denoted by z(t, ty, ¢) (simply z(t) if no confusion should occur). One may refer to [44] for the result
on the existence and the uniqueness of solutions of complex-valued impulsive differential systems.



ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


https://isiarticles.com/article/108745

