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A B S T R A C T

In this study, we propose a non-linear random mapping model called GELM. The proposed model is based on a
combination of the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and the
Extreme Learning Machine (ELM), and can be used to calculate Value-at-Risk (VaR). Alternatively, the
GELM model is a non-parametric GARCH-type model. Compared with conventional models, such as the
GARCH models, ELM, and Support Vector Machine (SVM), the computational results confirm that the GELM
model performs better in volatility forecasting and VaR calculation in terms of efficiency and accuracy. Thus, the
GELM model can be an essential tool for risk management and stress testing.

1. Introduction

There has been intensive research on risk modeling to develop
more sophisticated risk management techniques and models.
Following the increasing uncertainty in financial markets and the
global financial crises since the 1990s, it is of great interest to
practitioners, regulators, and academic researchers (Angelidis et al.,
2004). Value-at-Risk (VaR) has emerged as a suitable and remarkable
tool to quantify risk, and became popular and prevalent during the
1990s because of its simplicity and easy implementation (Giot and
Laurent, 2004). VaR proposed by Jorion (1995) is defined as the worst
expected loss over a given horizon at different levels of confidence.
Even though conceptually simple and usable, VaR estimations have
become more complicated and sophisticated during the last decade.

Overall, the VaR estimation methods can be categorized into three
major types (Kim and Lee, 2016). The first one is the parametric
method, wherein a return process is generated with error terms that
follow a specific distribution. A popular example is the Generalized
Autoregressive Conditionally Heteroskedastic (GARCH) model. The
GARCH model was first proposed by Bollerslev (1986), which uses
historical variance to predict future volatility under the assumption of

conditional heteroskedasticity. A number of extensions to the GARCH
model have been proposed and applied to financial markets, including
the integrated GARCH (IGARCH) model introduced by Engle and
Bollerslev (1986), the exponential GARCH (EGARCH) model proposed
by Nelson (1991), etc. In this study, we extend the literature on
conditional heteroskedasticity to encompass a broader class of GARCH
processes, namely, a non-parametric GARCH-type model. A detailed
introduction to GARCH-type models is given in Section II.

The second type is the semi-parametric method. It applies either
the quantile regression approach proposed by Koenker and Bassett
(1978) or extreme value distribution-based methods, for example,
Extreme Value Theory (EVT) introduced by Smith (1989). The EVT is
well known for modeling extreme tails by analyzing the upper and
lower quantiles of the corresponding distribution.1 For example, Wang
et al. (2012) use the composite quantile regression (CQR) method as
proposed in Zou and Yuan (2008), to estimate the intermediate
quantiles, and then extrapolated these estimates to calculate the
extreme quantiles using the EVT.

The third type includes the non-parametric method, which is
especially useful for analyzing big data, as in the case of machine
learning. An artificial neural network (ANN) is one of the most
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primitive machine learning frameworks, motivated by the learning
capabilities of the human brain, and capable of performing parallel
computation for time series forecasting. There are many ANN varia-
tions, such as back propagation (BP) networks introduced by Williams
and Hinton (1986), and the radial basis function (RBF) proposed by
Lowe (1989), among many others. However, bottlenecks in areas such
as overfitting, local minima, and computation time, etc, can restrict the
scalability of these models in conventional implementations. Cortes
and Vapnik (1995) put forward the statistical learning theory and
develop the Support Vector Machine (SVM) based on the structural risk
minimization (SRM) principle, which seeks to minimize an upper
bound on the Vapnik Chervonenkis (VC) dimension of the general-
ization error. Beyond these models, deep learning has become a
popular topic since Hinton and Salakhutdinov (2006) proposed the
deep belief networks (DBN). A DBN can handle complex, high-
dimensional time series by exploiting multilayer hierarchical neural
network architectures. In addition, convolutional neural networks
(CNNs) introduced by LeCun et al. (1989) are a family of multilayer
neural networks that automatically learn hierarchical features, and
therefore extract complex translation and distortion invariant features
in higher layers. A brief introduction to these models of relevance is
presented in Section II as well. One of the most important advantages
of these machine learning models is that they are data driven. In other
words, the models can be reasonably estimated with no prior assump-
tions on the nature of the error distribution.

In the era of big data, how to model and calculate the VaR for
high-dimensional time series becomes a challenging topic. Berman
(2013) finds that the unique features of big data are high dimension-
ality, complexity, massiveness, heterogeneity, incompleteness, noisi-
ness, and erroneousness. Thus, conventional approaches to measuring
risks face major challenges in handling big data. For example, most
conventional methods used to calculate the VaR were originally
designed for relatively small data sets, and may require additional
assumptions on the distribution of the error terms (e.g., a normal
distribution assumption). In addition, Chen and Zhang (2014) argue
that when analyzing big data, it is essential to speed up the estimation
procedure, especially for conventional approaches, in order to reduce
the computation time and memory requirements.

Recently, the extreme learning machine (ELM) has attracted
increasing attention. It provides a greater generalization performance
with a faster learning speed. The ELM proposed by Huang et al. (2006)
was originally developed for single-hidden layer feedforward networks
(SLFN), rather than using the classic gradient-based algorithms, which
has been extended to the generalized SLFN. In general, Huang et al.
(2012) deem that the essence of ELM is that when the input weights
and hidden layer biases are randomly assigned, the output weights can
be computed using the generalized inverse of the hidden layer output
matrix. In this study, motivated by the remarkable success of ELM in
terms of generalization performance and learning speed, we propose a
non-linear random mapping model called GELM, which is based on a
combination of the conditional heteroskedasticity processes and ELMs.
More specifically, we apply an ELM algorithm to high-dimensional
time series of GARCH processes, and thereby extend the multivariate
GARCH process in a non-parametric framework.

The main characteristics of the GELM model are as follows.
Firstly, compared with parametric and semi-parametric models, the
GELM model utilizes a random mapping method, which does not
employ the Gaussian likelihood to estimate the parameters.
Specifically, the GELM randomly generates the hidden node para-
meters, for which it keeps the same virtues of the random parameters
as in the ELM model. Once the input weights and the hidden layer
biases are randomly assigned, the output weights of the GELM model
can be calculated analytically using the simple generalized inverse
operation of the hidden layer output matrix.

The second characteristic lies in the fact that the proposed GELM
model is a non-linear data-driven model. More specifically, the GELM

model learns and approximates the dynamics of time series in a non-
linear fashion directly from the data, with no prior assumptions. That
is, in the GELM framework, it is not to assume that the conditional
dependencies are all contained in the conditional mean and variance,
and the variables are not necessarily independent over time. For
example, the model functions well, even when the stationary and
ergodic conditions are not satisfied. Thus, the GELM model is well
suited for complex problems with little prior knowledge, but with a
large number of observations.

Thirdly, the GELM model is more noise tolerant with regard to
connections between the system state variables. In other words, in the
learning process with the given data, the GELM model can always
correctly infer the hidden part of the time series, even if the sample
contains noisy information. It can be estimated under weak or even no
prior assumptions on the error distribution. In addition, the model can
learn and estimate complex systems with incomplete, non-linear, and
non-stationary data structures. Thus, it can handle big data sets in
high-dimensional spaces.

The rest of the paper is organized as follows. In Section 2, previous
works on GARCH-type models and feedforward neural networks are
reviewed. The basic ELM model is introduced in Section 3. Section 4
proposes the GELM model and Section 5 reports on the experimental
results, and discusses related issues. Lastly, Section 6 concludes the
paper, with possible directions for future research.

2. Literature review

Traditional time series tools for the conditional means such as
autoregressive moving average (ARMA) model introduced by Box and
Jenkins (1976) have been extended to analogous models for higher
moments of time series. Autoregressive Conditional Heteroscedasticity
(ARCH) models are commonly used to estimate and forecast changes in
the second moment of financial time series.2 Since the seminal work of
Engle (2002), much progress has been made in understanding GARCH
models and their multivariate extensions.

1) The univariate GARCH. Given an univariate GARCH model on
return series, we can infer the conditional distribution of the return,
and thereby calculate the VaR of a long or short position. The
univariate GARCH type models can be classified into four types.

The first type is the basic GARCH model proposed by Bollerslev
(1986), which can be written as:
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The second type relaxes the assumption of symmetry in the
conditional variance specification. For example, the most commonly
adopted asymmetric GARCH model is the GJR model developed by
Glosten et al. (1993):

2 For a survey of ARCH-type models, please see Bollerslev et al. (1992), Bera and
Higgins (1993), Pagan (1996), among many others.
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