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Time-resolved imaging in microscopy is important for the direct observation of a range of dynamic
processes in both the physical and life sciences. However, the image sequences are often corrupted by
noise, either as a result of high frame rates or a need to limit the radiation dose received by the sample.
Here we exploit both spatial and temporal correlations using low-rank matrix recovery methods to
denoise microscopy image sequences. We also make use of an unbiased risk estimator to address the
issue of how much thresholding to apply in a robust and automated manner. The performance of the
technique is demonstrated using simulated image sequences, as well as experimental scanning trans-
mission electron microscopy data, where surface adatom motion and nanoparticle structural dynamics
are recovered at rates of up to 32 frames per second.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Observing dynamic behaviour using microscopy can play a
crucial role in revealing new insights into chemical reactions,
structural transformations and biological processes. In these direct
observations, length scales can range from millimetres in light
microscopy to picometres in aberration-corrected transmission
electron microscopy (TEM), whilst observation timescales may
reach the femtosecond regime [1]. Important analysis of the image
sequences can include particle tracking [2], migration of defects
and grain boundaries [3,4], and bond making and breaking [5].

Dynamic imaging brings with it a considerable set of chal-
lenges. Acquiring rapid image sequences requires short exposure
times for each frame, and the resulting low photon or electron
counts lead to a degradation in the signal-to-noise ratio (SNR).
Similarly, long observations of radiation-sensitive materials can
alter the very processes being observed, causing severe damage to
the specimen. Again, this requires the use of low dose imaging and
thus a degraded SNR. Developing effective methods to denoise
image sequences is therefore essential to expanding the applica-
tions of dynamic imaging.

Denoising is a well-studied problem in image processing, and
many methods are capable of making significant improvements to the
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SNR. The related problem of video denoising has also been widely
studied, and the most effective schemes for video denoising exploit
the temporal correlation between frames. Recently, patch-based
methods from image denoising have been extended to image se-
quences, such as the V-BM4D algorithm [6], which couples motion
estimation with noise filtering to achieve state-of-the-art results.

Another promising approach for signal recovery is low-rank
matrix approximation [7], which is closely related to the method
of principal component analysis (PCA) [8]. Recently, low-rank
matrix approximation has been combined with a patch-based
approach to denoise dynamic MRI sequences [9]. This exploits the
fact that a stack of correlated, vectorized frames from a video will
form a matrix with low-rank, the recovery of which can be for-
mulated as a convex optimization problem, known as nuclear
norm minimization, and solved efficiently using singular value
thresholding [10,11].

In this paper we describe a robust algorithm for denoising
time-resolved microscopy image sequences, Poisson-Gaussian
Unbiased Risk Estimator for Singular Value Thresholding (PGURE-
SVT). The proposed approach, based on low-rank matrix approx-
imation, comprises a number of features designed to address ef-
fectively the particular challenges of microscopy image sequences.
These include optimal threshold selection, automated estimation
of the noise characteristics, and motion estimation of image fea-
tures. Importantly, the approach preserves, and indeed exploits,
the temporal information of the data, and is generally applicable to
many types of microscopy, including fluorescence microscopy and
TEM. Using simulated image sequences, PGURE-SVT is shown
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to be competitive with the state-of-the-art in video denoising
methods. In addition to rigorous evaluation via simulations, an
example application to experimental annular dark-field scanning
transmission electron microscopy (ADF-STEM) is presented,
highlighting the potential of PGURE-SVT to reveal new insights
into dynamic processes at the atomic level.

2. Theory

As the volume of data collected in microscopy experiments
grows, there is an increasing need to process the datasets in a
manner that extracts the key information content. This concept of
dimensionality reduction is usually tackled with PCA and related
methods, which seek to explain a large dataset in terms of a few
principal components by exploiting correlations and structure in
the data. Matrices that exhibit correlations between columns (or
rows) can be described as low-rank matrices, and it is this attri-
bute that enables the use of PCA. In a microscopy experiment, the
underlying data is often low-rank but corrupted by noise, and so
the low-rank data must be recovered from these noisy observa-
tions. The methods developed here share many principles with
PCA, but some distinctive features are particularly advantageous,
including robust automation of how much thresholding to apply.

Given a corrupted observation Y of a low-rank matrix X9, the
goal of low-rank matrix approximation is to recover X° as accu-
rately as possible. A natural approach to this problem is to find the
optimal solution to:
arg rr)l(in IIY — X|# + 4 rank(X) o
where X is the decision variable and 4 is a regularization para-
meter [10]. |[Y — X|}? represents the square of the Frobenius norm,
i.e. the sum of the squared differences of the matrix elements,
% \ Xij|2- Stating the problem in this way thus imposes a low-
rank constraint on the estimated matrix X, whilst the use of a
Frobenius norm ensures X is also a good fit of the observations, Y.
The following section outlines a computationally attractive algo-
rithm for solving Eq. (1), and presents an automated approach for
calculating the optimal value of 1 under the experimental condi-
tions encountered in microscopy.

2.1. Nuclear norm minimization

In practice, optimization of the rank function in Eq. (1) is an
intractable problem. However, Candés and Recht demonstrated a
powerful approach involving minimization of the nuclear norm of
the matrix as a convex approximation to the rank function [10].
This approach is based on the singular value decomposition (SVD),
defined for an m x n matrix Y as:

Y = UzvT @

where U is an m x m matrix of left singular vectors, Visan n x n
matrix of right singular vectors (VT represents the transpose of V),
and X is an m x n diagonal matrix. The values along the diagonal
of T are denoted as ¢;, and are known as the singular values of the
matrix Y. The SVD is a common method for decomposing datasets
in PCA, where the dataset is separated into scores UE, and loadings
V.

Nuclear norm minimization seeks to approximate X° by an

. .3 .
optimal low-rank solution X, according to:

A
= i — X|?
X, = arg min Y — X|; + 2 Xl 3

where ||X||; is the nuclear norm of X, which is defined as the sum
of the singular values of a matrix, 3; o; [10]. Cai et al. showed that

a solution to Eq. (3) can be found in a computationally attractive
manner using soft singular value thresholding (SVT) [11], accord-
ing to:
A

_ . _ T
X, = SV’L(Y) - Usﬂ(z)v @
where S; is the soft thresholding operator, and for each singular
value o;:

Si(0i) = max[o; — 4, 0] (5)

The soft thresholding operator contrasts with the typical hard
thresholding approach in PCA, which retains only those compo-
nents with singular values above a threshold 1 [12]. Eq. (5) instead
reduces all the singular values towards zero by a fixed amount.

For practical application to image sequences, a refinement to
Eq. (4) can be made. Instead of applying a single threshold value to
all singular values, a weighted threshold can be applied on the
basis that larger singular values correspond to more important
image features, and so should be reduced by a smaller amount
[13]. Defining the weighted nuclear norm of X as ||X|ly,« = X; Wi,
where w; > 0 is a weight assigned to the singular value ¢;, a so-
lution is now sought for:

A

X; = arg min |[Y = X[ + [|Xw ®)
where the parameter 1 has been incorporated into the weighted
nuclear norm. The approach taken in [13] uses weights w; in the
order 0 < w; < ... < w, (based on the fact that the singular values
of a matrix are always sorted in descending order
61 > 063 > ... > oy). This ensures the use of soft singular value
thresholding remains valid [14]. In the present work we propose to
use an exponential weighting scheme to minimize the computa-
tional complexity compared to the scheme in [13]. Letting
omax = Max[X], the exponentially weighted SVT operator in-
corporating the parameter A is:

2
Wi(oi) = max[o',- — Omax exp(—%), O] -

and the weighted SVT function is:

wsvr,(Y) = uw,(z)vr ®)

2.2. Patch-based nuclear norm minimization

In forming a so-called Casorati matrix, whose columns are the
vectorized frames from an image sequence, the correlation be-
tween frames in the sequence means that such a matrix will be
low-rank [15]. In reality, the size of the spatial dimension will
often exceed the size of the temporal dimension (nyn, > T, where
nyny is the number of pixels in each frame and T is the number of
frames), and this may lead to problems with the SVT approach due
to limited degrees of freedom [9]. Analyzing the image sequence
via a patch-based approach can overcome this problem. The
patch-based approach is illustrated in Fig. 1, where a 3 x 3 pixel
patch is extracted from each frame and vectorized to form a col-
umn of the Casorati matrix C.

Fig. 2 shows an example of SVT applied to a Casorati matrix
formed by vectorized images of a 2D Gaussian peak. The resulting
Casorati matrix shown in Fig. 2b is in fact rank 1, as can be seen in
the singular value plot in Fig. 2e. These singular value plots can be
interpreted in a similar way to a scree plot in PCA, in which most
of the variance in the Casorati matrix (and by extension the ori-
ginal image sequence) can be explained by the first component,
and the remaining components mainly describe the noise in the
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