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A B S T R A C T

We perform thorough molecular-dynamics simulations to compare elasticity and yielding of atomic crystals and
model semicrystalline polymers, the latter characterized by very similar positional ordering with respect to atomic
crystals and considerable bond disorder. We find that the elastic modulus G, the shear yield strength, τY , and the
critical yield strain εc of semicrystalline polymers are higher than (G, τY ), or comparable to (εc), the corresponding
ones of atomic crystals. The findings suggest that the bond disorder suppresses dislocation-mediated plasticity in
polymeric solids with positional order.

1. Introduction

Elasticity theories [1–4] predict that solid materials respond linearly
with elastic modulus G to small shear deformations. Upon increasing
strain, amorphous solids show complex and far from linear behavior
[5–7]. When a critical yield strain εc is reached, corresponding to the
shear yield strength τY , the transition from the (reversible) elastic state to
the (irreversible) plastic state takes place [8–10]. In an ideal
elasto-plastic body (Hooke-St.Venant) τY is the maximum stress [8].

It is well-known that plasticity in crystalline solids results from the
structure and the mobility of defects (in particular dislocations) [11].
Dislocations do not exist in amorphous polymers, but, under an applied
stress, elementary shear displacements can occur in a spatially correlated
linear domain which can close on itself to form a loop to be interpreted in
terms of classical dislocation mechanics and energetics [8,12–14].
However, even if the model can be used to fit the experimental data,
there are conceptual problems to extend dislocation based concepts to
glassy polymers [15,16]. That difficulty is part of the complexities
involved in the phenomenon of plastic deformation in glassy polymers
which is not yet fully understood, in spite of many accurate phenome-
nological models, see e.g. Refs. [8,15] for comprehensive reviews. In
particular, Argon considered a scenario where individual chains are
embedded in an elastic continuum [15]. He argued that plastic defor-
mation is caused by the cooperative rearrangements of a cluster of seg-
ments with size Ωf . The latter region is thermally activated under the
applied stress to overcome the resistance that is generated from elastic

interaction of the polymer chain with its surroundings. Ωf is significantly
smaller than the activation volume of dislocations [8,15]. The concept of
localized cooperative rearrangements was proven to be fruitful also to
account for the plasticity of non-polymeric glasses [15]. It was found that
Ωf is much smaller in amorphous metals with respect to glassy polymers.
In comparison with the plasticity of crystalline solids, where the
long-range positional order permits the translation of dislocations, the
plasticity of disordered solids is mainly driven by the activation of
cooperative rearrangements within the cluster of segments [15,17].

The previous discussion highlights that there are strong differences in
the microscopic mechanisms of plasticity of atomic crystals and polymeric
glasses. These two classes of materials differ in two rather distinct aspects,
namely the connectivity and the positional ordering. Since these two
features cannot be thought of as mutually independent and may exhibit
antagonism, singling out the role of each of them is of interest. As a first
step along this direction, the present paper aims at elucidating the role of
connectivity into the linear and non-linear deformation of solids with
different connectivity and rather similar positional order. Influence of con-
nectivity outside the elastic limit has been recently reviewed [18]. Our
study considers atomic crystals and polymer semicrystals, the latter with
very similar positional ordering and considerable bond disorder to
average out the coupling between connectivity and positional order [19,
20]. We find that the elastic modulus G, the shear yield strength, τY , and
the critical yield strain εc of polymeric semicrystals are higher than (G,
τY ), or comparable to (εc), the corresponding ones of atomic crystals. The
results show that the introduction of disordered connectivity perturbs the
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long-range order, most presumably suppressing dislocation-mediated
plasticity, and then increases the shear strength. In this sense, if posi-
tional order is present, atomic and polymeric plasticity appear to be not
reconcilable. It is worth noting that the previous conclusion does not hold
for glassy systems where, e.g., the plasticity of polymeric and atomic
glasses with different connectivity exhibits similarities [21].

2. Methods

Molecular-dynamics (MD) numerical simulations were carried out on
two different systems, i.e. a melt of linear polymers and an atomic liquid.

As to the polymer systems, a coarse-grained polymer model of Nc ¼
50 linear, fully-flexible, unentangled chains with M ¼ 10 monomers per
chain is considered [19]. The total number of monomers is N ¼ 500.
Non-bonded monomers at distance r belonging to the same or different
chain interact via the truncated Lennard-Jones (LJ) potential:

ULJðrÞ ¼ ε
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σ� ¼ 21=6σ is the position of the potential minimum with depth ε. The
value of the constantUcut is chosen to ensureULJðrÞ ¼ 0 at r � rc ¼ 2:5 σ.
The bonded monomers interaction is described by a harmonic potential
Ub:

UbðrÞ ¼ kðr � r0Þ2 (2)

The parameters k and r0 have been set to 2500 ε=σ2 and 0:97 σ
respectively [22]. Full-flexibility of the chain is ensured by the missing
bending stiffness between adjacent bonds [20]. It must be pointed out
that the bond length ’ 0:97 σ prevents the significant heterogeneity of
the monomer arrangements which is seen with longer bond length, see
Fig. 6a of Ref. [20].

As to the atomic systems we consider systems of N ¼ 500 atoms
interacting with the truncated Lennard-Jones potential as in Eq. (1).

From this point on, all quantities are expressed in term of reduced
units: lengths in units of σ, temperatures in units of ε=kB (with kB the
Boltzmann constant) and time tMD in units of σ

ffiffiffiffiffiffiffiffiffi
m=ε

p
where m is the

monomer mass. We set m ¼ kB ¼ 1. Periodic boundary conditions are
used. The study was performed in the NPT ensemble (constant number of
particles, pressure and temperature). The integration time step is set to
Δt ¼ 0:003 time units [23–26] The simulations were carried out using
LAMMPS molecular dynamics software (http://lammps.sandia.gov)
[27].

Fifty-six polymeric samples with initial different random monomer
positions and velocities are equilibrated at temperature T ¼ 0:7 and
pressure P ¼ 4:7, corresponding to number density ρ � 1. That ther-
modynamic states allows the polymer melt to equilibrate in the liquid
phase for at least three times the average reorientation time of the end-
end vector of the chain. After the equilibration, production runs started
and proceeded up to the spontaneous onset and the full development of
the crystallization of the samples. Fourteen runs failed to crystallize in a
reasonable amount of time, while forty-two of them underwent crystal-
lization forming polymorph crystals with distorted body-centered cubic
(Bcc) lattices. Additional details, in particular concerning the crystalli-
zation process, are given elsewhere [19]. Sixty-four atomic liquid runs
were equilibrated with starting temperature T ¼ 1:5 and pressure P ¼
20:0. The temperature is higher in the atomic systems to avoid crystal-
lization before the initial equilibration of the liquid phase, as the absence
of polymer bonds facilitates the transition to the solid phase. The pres-
sure ensures similar densities in the polymeric and atomic liquids. After
equilibration for several relaxation times τα in the liquid phase, fifty-one
runs spontaneously crystallized into two well defined classes. Seventeen
runs formed solids quite close to face-centered cubic (Fcc) crystals and
thirty-four runs formed Bcc-like atomic crystals. See sec. 3 for a detailed
discussion. The remaining thirteen runs reached a variety of metastable

solid-like conformations and were discarded.
After completion of the solidification, all the systems were quenched

to temperature T ¼ 10�3 and pressure P ¼ 0 in a time Δt ¼ 0:003 and, in
agreement with others [29], later allowed to relax with an NPT run to let
the total energy stabilize. The latter run lasted for a total time t ¼ 3000.
The final densities of the polymeric and atomic Bcc-like solids are’ 1:11
and ’ 1:052, respectively. The density offset is due to the different
connectivity, having both solids the same pressure ( P ¼ 0) and tem-
perature ( T ¼ 0 ).

Simple shear deformations of the resulting athermal solids were
performed via the Athermal Quasi-Static (AQS) protocol outlined in
Ref. [29]. An infinitesimal strain increment Δε ¼ 10�5 is applied to a
simulation box of side L containing the sample, after which the system is
allowed to relax in the nearest local energy minimum with a steepest
descent minimization algorithm. The accurate localization of the state
corresponding to a local energy minimum ensures force equilibration on
each particle, i.e. mechanical equilibration. The procedure is repeated
until a total strain of Δεtot ¼ 15⋅10�2 is reached. Simple shear is per-
formed independently in the planes (xy, xz, yz), and at each strain step in
the plane αβ the corresponding component of the macroscopic stress
tensor τα;β is taken as the average value of the per-monomer stress τiα;β:

τα;β ¼ 1
N

XN
i¼1

τiα;β (3)

In an athermal system the expression of the per-monomer stress in the
atomic representation is [30]:

τiα;β ¼
1
2 v

X
j 6¼i

rαijFβij (4)

where Fγkl and rγkl are the γ components of the force between the kth and
the lth monomer and their separation, respectively, and v is the average
per-monomer volume, i.e. v ¼ L3=N. For each plane a stress-strain curve
is collected, an illustrative example of which is given in Fig. 1.

Fig. 1 is quite analogous to what reported for many other systems
under athermal conditions [31–36] with an initial linear increase fol-
lowed by increasing bending and onset of the plastic regime. In partic-
ular, similarly to other MD studies of glassy polymers [37], one notices
that, in the plastic regime, the stress levels off to a plateau with fluctu-
ations caused by subsequent loading phases and sudden stress drops. We

Fig. 1. Typical stress-strain curve under athermal quasi-static shear deformation
of the semicrystalline polymer. After a first ’loading’ phase, plastic events with
macroscopic stress drops become apparent. τY is defined as the average value of
τ in the steady state phase [28]. εc is defined as the strain at the first significant
plastic event with stress drop of at least Δτth ¼ 0:1. The elastic modulus G (see
inset) is measured via a linear fit of the stress-strain curve in the linear regime of
small deformations 2ε < 0:02.
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