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Abstract

In this article, we consider a Markov process {X t }t⩾0, which solves a stochastic differential equation
driven by a Brownian motion and an independent pure jump component exhibiting both state-dependent
jump intensity and infinite jump activity. A second order expansion is derived for the tail probability
P[X t ⩾ x + y] in small time t , where x is the initial value of the process and y > 0. As an application of
this expansion and a suitable change of the underlying probability measure, a second order expansion, near
expiration, for out-of-the-money European call option prices is obtained when the underlying stock price
is modeled as the exponential of the jump–diffusion process {X t }t⩾0 under the risk-neutral probability
measure.
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1. Introduction1

In this work we consider a Markov process X := {X t }t⩾0 with an infinitesimal generator of2

the form3

L f (x) = b(x) f ′(x) +
σ 2(x)

2
f ′′(x) +

∫
R0

( f (x + γ (x, r )) − f (x)4

− 1{|r |⩽1}γ (x, r ) f ′(x)
)
ν(x, r )dr, (1.1)5

where R0 := R\{0} and b : R → R, σ : R → (0,∞), γ : R×R0 → R, and ν : R×R0 → (0,∞)6

are deterministic functions satisfying appropriate conditions for the existence of such a process7

(see Section 2 for further details). Broadly, X can be constructed as the solution of a stochastic8

differential equation (SDE) of the form:9

d X t = b(X t )dt + σ (X t )dWt + d Jt ,10

where W := {Wt }t≥0 is a Wiener process and J := {Jt }t≥0 is an independent pure-jump process,
whose jump behavior is dictated by ν and γ as follows:

E
[
#{s ∈ [t, t + δ] : ∆Xs ∈ (a, b)}

]
= E

[
#{s ∈ [t, t + δ] : ∆Js ∈ (a, b)}

]
= E

[∫ t+δ

t

∫
1{γ (Xs− ,r )∈(a,b)}ν(Xs− , r )drds

]
, (1.2)

for any t ∈ (0,∞), δ > 0, and (a, b) ∈ R \ {0}. Intuitively, (1.2) tells us that the jump intensity11

of the process “near” time t depends on its state immediately before t via the function ν in that if12

ν(X t− , r ) is large (small), then we expect a higher (lower) intensity of jumps immediately after13

time t . In the particular case of γ (x, r ) ≡ r , (1.2) reduces to14

E
[
#{s ∈ [t, t + δ] : ∆Xs ∈ (a, b)}

]
= E

[∫ t+δ

t

∫ b

a
ν(Xs− , r )drds

]
, (1.3)15

and ν (X t− , r) has the usual interpretation of a stochastic jump intensity as defined in, e.g., [3]16

and [7]. That is, ν(x, r ) measures the expected number of jumps, per unit time, with size near r17

when the process is at state x . State-dependent jump behavior as described above is an important18

feature that offers greater modeling flexibility to other commonly studied jump processes19

(see [17,13–15,8,9,21], and [26]). In the financial literature, for instance, [17] empirically asserts20

the plausibility of state-dependence not only on the drift and volatility of the returns but also on21

the jump intensity. Other areas of finance where state-dependent jump activity has been studied22

include interest and exchange rate modeling [8,13–15,26] and option pricing [10,21].23

The generator (1.1) covers a wide range of processes. For a Lévy processes, b and σ are24

constants, γ (x, r ) = r , and ν(x, r ) = h(r ), for a Lévy density h : R \ {0} → [0,∞)25

(i.e.,
∫

(x2
∧ 1)h(x)dx < ∞). When we simply have ν(x, r ) = h(r ), we recover the class of26

(local) jump–diffusion models studied in [12]. In that case, X can be constructed as27

X t = x +

∫ t

0
b(Xs)ds +

∫ t

0
σ (Xs)dWs +

∑
s∈(0,t]:|∆Zu |≥1

γ (Xs− ,∆Zs)28

+

c∑
s∈(0,t]:0<|∆Zu |≤1

γ (Xs− ,∆Zs), (1.4)29

where Z is a Lévy process with Lévy density h and
∑c denotes the compensated Poisson sum30

of the terms therein. The case of ν(x, r ) = λ(x)p(r ) with
∫

p(r )dr = 1 has been studied in [26].31
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