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h i g h l i g h t s

� Energy intensity depends on water treatment technology.
� Facilities using rapid gravity filters present economies of scale in energy intensity.
� Factors affecting energy intensity of drinking water treatment plants are identified.
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a b s t r a c t

To provide safe drinking water to urban populations, raw water must be treated in drinking water treat-
ment plants, which are energy-intensive facilities. Previous studies have assessed energy intensity (EI:
unit of energy required per unit of treated water) of conventional drinking water treatment plants, but
they ignored variations related to water treatment trains. By modeling 179 facilities of four water treat-
ment trains, we explored factors potentially affecting energy intensity, such as removal efficiencies of
pollutants and treatment capacities of drinking water treatment plants. We also investigated the econo-
mies of scale in energy intensity of drinking water treatment plants. Our results illustrated that the
energy intensity of water facilities using pressure filter systems is affected by several pollutant removal
efficiencies, but not by plant capacity. In contrast, the volume of water treated is the main factor respon-
sible for the energy intensity in plants using rapid gravity filter systems and, therefore, their energy
intensities are significantly affected by economies of scale. The results of this study should be useful to
policy makers planning new facilities and developing policies to reduce the carbon footprints of urban
water treatment plants.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The provision of clean water requires an energy input [1]. Urban
water systems consume a substantial amount of energy and, thus,
contribute to climate change [2]. In addition, the energy consump-
tion of the water sector is likely to expand to meet the growing
demand for cleaner water and to prevent water shortages in urban
and urbanizing areas [3]. Increased energy use may be further
exacerbated by population growth, climate change, and the imple-
mentation of more restrictive regulatory requirements for improv-
ing water quality [4,5,6]. In the near future, new water supply
systems will need to be built to provide safe drinking water for

populations in developing countries. According to WHO-UNICEF
[7], in 2015, 663 million people still lacked safe drinking water.
Hence, the energy requirements for safe drinking water in urban
areas will likely increase worldwide.

Given the relevance of energy use and greenhouse gas emis-
sions in urban water supply, several recent studies have quantified
the energy used in the water supply sector. For example, Smith
et al. [8] quantified the energy employed for maintaining an urban
water supply in China and analyzed this energy requirement rela-
tive to population density and gross domestic product. Detailed
studies of energy requirements were developed by Barrios et al.
[9], Gerbens-Leenes [10] for the Netherlands and by Sanders and
Webber [11] in the United States, which assessed energy con-
sumed relative to water use. Other studies have quantified the
energy used to supply urban water to several cities, such as New
York [12], Toronto [13], Tampa, Kalamazoo [14], Los Angeles [15]
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and Beijing [16,17]. A review of the energy requirements for water
supply systems has also been provided by Gude [1], Wakeel et al.
[18].

To ensure safe, reliable, and high-quality drinking water to cit-
izens, raw water should be treated in drinking water treatment
plants (DWTPs) prior to distribution. Several energy-consuming
processes are used by DWPTs to make water potable: coagulation,
flocculation, filtration, and sedimentation [19]. Studies have been
carried out to assess the electricity consumption of DWTPs, mainly
by using a life-cycle assessment tool (for a review, see [20]). Miller
et al. [21] used an end-use energy intensity (EI) approach (i.e., unit
of energy required per unit of treated water) to compare Indian
water treatment facilities with similar facilities in US cities. A more
specific study by Santana et al. [22] investigated the influence of
water quality parameters on the embodied energy of drinking
water treatment facility.

Previous studies analyzing EI approaches for DWTPs have been
very useful for evaluating the carbon footprint of water treatment
facilities. However, these studies have had three main limitations.
First, with the exception of the Santana et al. [22] study, previous
studies ignored the quality of the raw water (influent). Water qual-
ity affects the choice of treatment options and, therefore, the EI of a
given DWTP [10]. In the framework of carbon emissions studies,
Mo et al. [23] found that water quality could have a greater effect
on energy input than water availability. However, previous studies
assessing the EI of DWTPs used the term ‘‘conventional” water
treatment [20,24], even though their studies involved facilities
with various types of water treatment trains (WTTs). Second, most
EI assessments focused on only one or a few DWTPs. Thus, their
results were very specific to a city or region and not applicable
to other water treatment approaches. Finally, despite debate about
the sustainability of centralized vs. decentralized urban water sys-
tems, to the best of our knowledge, there have been no studies ana-
lyzing whether economies of scale of DWTPs affect EI. When
planning for the construction and operation of new DWTPs, it is
critical to know which WTT types can provide the best economies
of scale.

The objective of this paper is to understand how and to what
degree the EI of DWTPs is impacted by a facility’s capacity, age,
and its efficiency in removing pollutants. Moreover, to compare
how various WTT technologies might affect carbon emissions we
categorized DWPTs into four types of WTTs and determined how
much energy was required by the various approaches. We catego-
rized WTTs because grouping all WTT configurations into one
‘‘conventional DWTP” category is not sufficiently accurate to deter-
mine how to minimize carbon emissions in water treatment.

This paper contributes to the current strand of literature in the
field of the water-energy nexus in several aspects. First, to the best
of our knowledge, no prior studies have modeled the EIs of a large
number of DWTPs (n = 179). Second, the EIs of four different WTTs
are compared. Hence, this study provides a pioneering and novel
comparison of EI of WTTs. Third, it is explored for each WTT,
how and to what degree its EI is influenced for a set of technical
variables. Finally, no study to date has investigated variations in
economies of scale in EIs among DWTPs. The procedures we
applied and the results we obtained will be of great interest to pol-
icy makers planning new DWTPs and developing policies aimed at
reducing EI and greenhouse gas emissions associated with DWTPs.

2. Materials and methods

2.1. Methods

The EI of a DWTP could be affected by several complex and
interrelated factors. Previous studies ([22,23,25,26]) illustrated

that statistical analysis is an effective means for understanding
the influence of a set of independent variables, or ‘‘predictors”,
on a dependent variable. In this study, we used regression analysis
because it explains changes in a dependent variable (EI) when any
of the independent variables vary.

A regression model relates Y to a function of X and a as follows:

Y � f ðX;aÞ ð1Þ

where Y is the dependent variable (EI, expressed in kW h/m3), X is
an independent or predictor variable (volume of water treated, age
of the facility, efficiency in the removal of pollutants), and a is an
unknown parameter.

The first step for selecting independent variables was to test
collinearity (i.e., to identify if any of the potential predictors were
correlated). Pearson correlation coefficients were estimated among
the independent variables. Values closer to 1.0 and �1.0 meant a
strongly positive or negative correlation, respectively, between
two variables. In these cases, only one of the variables was used
in the regression analysis. After the regression analysis was con-
ducted, a condition number test was performed to ensure that
there were no multicollinearity problems [27]. A White test was
performed to test for heteroscedasticity [28]. By performing these
tests beforehand, we ensured that we met the basic statistical
assumptions required for regression analysis.

Following Hernandez-Sancho et al. [29], a parametric regression
analysis approach was applied (i.e., regression function was
defined based on a finite number of unknown parameters esti-
mated from the data). This approach required us to choose the type
of function that would best model the conditions. Given the lack of
previous studies similar to ours, we could not define a preferential
a priori form for the function. Santana et al. [22] used linear regres-
sion to relate total embodied energy in a set of water quality vari-
ables, but did not consider the treatment capacity of the plant; this
variable usually has a nonlinear relationship with dependent vari-
ables [25,29]. Therefore, we considered both linear (Eq. (2)) and
exponential (Eq. (3)) models as potential functions in the regres-
sion analysis:

Y ¼ a0 þ a1x1 þ a2x2 þ . . .þ akxk þ e ð2Þ

Y ¼ e

Xn

k¼1

ak
Pkin�Pkef

Pkef

� �

� Vb � Ad ð3Þ
In Eq. (2), a0 is the intercept, a1;a2; . . .ak are regression coeffi-

cients measuring the influence of each independent variable over
the dependent variable (Y), x1; x2; . . . xk are significant independent

variables, and e is an error term. In Eq. (3), Pk is the kth pollutant
(k = 1,2, . . .,n), Pkin is the concentration of pollutant Pk in the influ-
ent, Pkef is the concentration of pollutant Pk in the effluent, V is the
treatment capacity of the DWTP (defined by the volume of water
treated annually), A is the age of the plant (years old), and ak,
and d are unknown parameters.

We used a stepwise regression method (using SPSS software) to
identify any significant independent variables. For an independent
variable to be significant in modeling the EI of a DWPT, we speci-
fied that its p-value must be less than 0.05. Hence, it is a measure
of the accuracy to which the regression can predict the dependent
variable. The value of R2 ranges from 0 to 1, with a value of 1 mean-
ing that the adjustment between actual and estimated data is per-
fect. Regressions with R2 values larger than 0.5 are typically
considered significant.

Budescu’s dominance analysis [30] and Johnson’s relative
weight procedure [31] were used to examine the contribution of
each independent variable in modeling the EIs of DWTPs. Both
procedures measure the proportional contribution that each
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