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A B S T R A C T

We tested the usefulness of seasonal climate predictions for impacts prediction in eastern Africa. In regions
where these seasonal predictions showed skill we tested if the skill also translated into maize yield forecasting
skills. Using European Centre for Medium-Range Weather Forecasts (ECMWF) system-4 ensemble seasonal cli-
mate hindcasts for the period 1981–2010 at different initialization dates before sowing, we generated a 15-
member ensemble of yield predictions using the World Food Studies (WOFOST) crop model implemented for
water-limited maize production and single season simulation. Maize yield predictions are validated against
reference yield simulations using the WATCH Forcing Data ERA-Interim (WFDEI), focussing on the dominant
sowing dates in the northern region (July), equatorial region (March-April) and in the southern region
(December). These reference yields show good anomaly correlations compared to the official FAO and national
reported statistics, but the average reference yield values are lower than those reported in Kenya and Ethiopia,
but slightly higher in Tanzania.

We use the ensemble mean, interannual variability, mean errors, Ranked Probability Skill Score (RPSS) and
Relative Operating Curve skill Score (ROCSS) to assess regions of useful probabilistic prediction. Annual yield
anomalies are predictable 2-months before sowing in most of the regions. Difference in interannual variability
between the reference and predicted yields range from±40%, but higher interannual variability in predicted
yield dominates. Anomaly correlations between the reference and predicted yields are largely positive and range
from +0.3 to +0.6. The ROCSS illustrate good pre-season probabilistic prediction of above-normal and below-
normal yields with at least 2-months lead time. From the sample sowing dates considered, we concluded that,
there is potential to use dynamical seasonal climate forecasts with a process based crop simulation model
WOFOST to predict anomalous water-limited maize yields.

1. Introduction

Agriculture is the major land use across the globe and is of high
economic, social, and cultural importance. In its many forms, agri-
culture remains highly sensitive to both climate extremes and to var-
iations in climate and trends on a range of time scales; particularly in
regions where rainfed agriculture supports majority of the population
and plays crucial roles in national economies like East Africa.
Improving resilience of the agricultural sector by preparing the vul-
nerable populations for extreme weather variability and developing
reliable crop production systems (Matthew et al., 2015) can not only
have a positive effect on socio-economic development but also enhance
food security through better agricultural management and policy

formulation that proactively accounts for variable climatic conditions
(Bahaga et al., 2015).

Operationally, efforts towards improved resilience to extreme cli-
mate variability are on-going through issuance of pre-season climate
forecasts generated by both statistical and dynamical methods. In
Eastern Africa, these forecasts are issued through the Greater Horn of
Africa Climate Outlook Forum (GHACOFs) (Martinez et al., 2010;
Ogallo et al., 2008) organized by the Intergovernmental Authority for
Development (IGAD)- Climate Prediction and Applications Centre
(ICPAC) and the World Meteorological Organization (WMO) together
with other partners. It brings together scientists from the global climate
producing centres, meteorologists from the National Meteorological
and Hydrological Services (NMHS) from the GHA region, climate
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forecast end-users and the relevant stakeholders to develop a consensus
rainfall and temperature forecasts for the coming season plus likely
impacts on climate sensitive sectors (Hansen et al., 2011; Ogallo et al.,
2008) including agriculture. The scientists further downscale the con-
sensus seasonal climate outlooks for national impacts and other pur-
poses. Seasonal climate impacts outlook are generally based on sub-
jective expert judgement rather than explicit quantitative methods.

Model based, quantitative pre-season crop yield forecasting plus
communication of associated uncertainty and skill could be in-
corporated into GHACOF process to enhance use of seasonal climate
forecasts by providing direct impacts on maize production, based on the
assumption that predictable climate can be translated into predict-
ability of crop phenological development and subsequent yields. This
study presents the possibility of providing bio-physical process based,
quantitative yield forecasts besides the seasonal climate forecasts al-
ready routinely issued.

A number of early warning systems (EWS) exist in East Africa with
mandates to provide food security outlooks and warnings. For example,
the United States Agency for International Development’s (USAID)
Famine EWS (FEWS-NET) provides food security outlook, assistance
outlooks, markets and agricultural trading outlooks (Brown et al., 2007;
Ververs, 2012). The Global Information and Early Warning Systems
(GIEWS) of United Nation’s Food and Agriculture Organization (FAO)
(FAO, 2010; Ververs, 2012) provides information on crop prospects and
food situation depending on emerging crisis often after crop and food
security assessment missions. The Food Security and Nutrition Working
Group (FSNWG), a regional platform whose members include NGOs,
UN agencies, and research institutions, amongst others, provide food
security and nutrition outlook in their monthly meetings. For crop
monitoring, these organizations use agrometeorological assessment
reports and satellite technologies that monitor conditions of food crops
after planting for example the normalized difference vegetation index
(NDVI), rainfall estimates, and expert judgement to estimate impending
food security situations. The existing EWS largely focus on water
availability without considering the water-temperature interactions,
even though temperature is critical in both rainfed and irrigated agri-
culture as it influences the rate of crop development and water deficit in
irrigated fields. The complex reactions between climate variables and
crop physiology are better simulated using biophysical models as in this
study.

Since existing EWS monitor crops when they are already in the
fields, little adaptation measures can be implemented to adjust to the
prevailing climate situation. This study can directly expand the time
horizon of crop performance prediction from existing EWS by including
pre-season forecasts, and provide high resolution yield forecast in-
formation that is also relevant to farmers, rather than only to their
traditional clients (i.e. governments and humanitarian agencies).

Seasonal climate forecasts are currently routinely issued up to 12-
months before the start of seasons (lead-time) by numerous operational
global forecast centres. With sufficient lead time before the start of a
growing season, different adaptation options are possible (e.g. choosing
different crop or varieties, heavy or low investment in farm inputs) as
opposed to forecasts issued after crops are planted. Global Climate
Model (GCM) based seasonal climate forecasts have been used in
agricultural impacts modelling globally with varied results, suggesting
variations in skill due to factors like spatio-temporal scales used, level
of surface heterogeneity, crop management practices, and model in-
itialization, amongst others (Jones et al., 2000; Lawless and Semenov,
2005; Neumann et al., 2010; Shin et al., 2010). Driving crop models
with skilful seasonal climate forecasts may not guarantee good yield
forecasts (Baigorria et al., 2007; Semenov and Doblas-Reyes, 2007; Shin
et al., 2010), but the reverse, i.e. better skill in the crop forecast than in
the meteorological forecast has also been reported (McIntosh et al.,
2005). In addition, whether a crop in a certain region experiences
temperature or moisture limitations affects yield predictability differ-
ently. For example, since temperature influences crop phonological

development and its predictability is generally higher than for pre-
cipitation (Iizumi, 2013; Ogutu et al., 2016), its predictability influ-
ences yield predictability differently. Finally, the time of the year in
which a forecast is useful depends on the crop and region (McIntosh
et al., 2007), i.e. depends on the local cropping calendars. This study
seeks to identify lead times and regions in East Africa with useful pre-
season yield predictability based on pre-season climate forecasts.

Seasonal crop yield forecasts have been derived from either his-
torical statistical relationships with rainfall or large scale climate in-
dices such as the El Nino Southern Oscillation (ENSO) Index (Amissah-
Arthur et al., 2002; Iizumi et al., 2014; Hansen et al., 2009; Martin
et al., 2000; Phillips et al., 1998), and its influence on seasonal rainfall
in some parts of the world such as eastern and southern Africa. These
statistical methods are successful at broader spatial extents like national
boundaries or regions (Amissah-Arthur et al., 2002; Iizumi et al., 2014;
Lobell and Burke, 2010; Phillips et al., 1998; Thornton et al., 2009) and
may not suffice for smaller spatial scales where heterogeneities exist.
For example, above normal rainfall season may result in low yields
related to nutrient leaching depending on soil types. High rainfall
variability exist in small regional extents even in an otherwise “good
rainfall season” and statistical relationships do not capture rainfall
characteristics (such as distribution during a season and frequency) that
are important for crop yields. Weaknesses related to the use of large
scale climate indices to forecast yields are highlighted in Mjelde and
Keplinger (1998). Poor records of historical yields on which the sta-
tistical models are calibrated also influence prediction skill.

Confronted with the current climate change and variability together
with climate teleconnections between a region of interest and other
parts of the globe, any past statistical relationships between yields and
climate indices may no longer hold true because the future will be
under climate regimes (variability) not observed before. It is not clear if
the relationships between phenological observations and satellite de-
rived vegetation indices will hold true since observations will also be
under different climate regimes (for example higher temperatures than
in the historical period) and since crop response to climate is not linear
(Porter and Semenov, 2005), mean historical observations may not
suffice. Most studies related to yield impacts modelling over East Africa
use GCM outputs to assess future climate change impacts on yields. In
this study, we explore the use of seasonal forecasts and crop models to
simulate yields at the shorter seasonal scales that determine year-to-
year food production.

This work explores the use of dynamical seasonal climate forecasts
based on Global Climate Models to simulate agricultural impacts. We
assess ensemble (probabilistic) predictive skill of maize yields based on
GCM seasonal climate forecasts via both baseline and hindcasts vali-
dation for the period 1981–2010. The aim is to identify lead times and
areas of potential pre-season yield forecasting based on seasonal cli-
mate forecasts and maize planting dates. We assess how well yield
forecasts capture observed/reference yield anomalies due to inter-
annual climate variability and climate anomalies.

Because of inherent biases in climate models, bias correction of
model output is important for impact studies. For example, biases in
temperature would grossly affect simulation of maize phenology which
depends on (cumulative) thermal time units during growing period.
This study therefore uses bias corrected climate forecasts.

2. Materials and methods

2.1. Model description

Hindcast grid point maize yield forecasts over East Africa are si-
mulated using the World Food Studies crop simulation model
(WOFOST); a simulation model for the quantitative analysis of the
growth and production of annual crops. WOFOST is a detailed model
with respect to crop physiology allowing for example a specification of
regionally used varieties. It was originally developed to simulate crop
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