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a b s t r a c t 

The concepts of diffraction and scattering are well known and considered fundamental in optics and 

other wave phenomena. For any type of wave, one way to define diffraction is the spreading of waves, 

i.e., no change in the average propagation direction, while scattering is the deflection of waves with a 

clear change of propagation direction. However, the terms “diffraction” and “scattering” are often used 

interchangeably, and hence, a clear distinction between the two is difficult to find. This review considers 

electromagnetic waves and retains the simple definition that diffraction is the spreading of waves but 

demonstrates that all diffraction patterns are the result of scattering. It is shown that for electromagnetic 

waves, the “diffracted” wave from an object is the Ewald–Oseen extinction wave in the far-field zone. The 

intensity distribution of this wave yields what is commonly called the diffraction pattern. Moreover, this 

is the same Ewald–Oseen wave that cancels the incident wave inside the object and thereafter continues 

to do so immediately behind the object to create a shadow. If the object is much wider than the beam 

but has a hole, e.g., a screen with an aperture, the Ewald–Oseen extinction wave creates the shadow 

behind the screen and the incident light that passes through the aperture creates the diffraction pattern. 

This point of view also illustrates Babinet’s principle. Thus, it is the Ewald–Oseen extinction theorem that 

binds together diffraction, scattering, and shadows. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Diffraction can be thought of as the spreading of a wave into 

the geometrical shadow behind an impervious obstacle [1–3] . The 

mechanism of diffraction depends upon the type of wave. Gener- 

ally, waves divide into two types; those that require a material 

medium in which to propagate and those that do not. For those 

propagating in a material medium, e.g., water and sound waves, a 

wave is blocked by an obstacle and the portion of the wave pass- 

ing near the edge of the obstacle spreads into the geometrically 

shaded region due to the elastic nature of the medium. In this con- 

text, “blocking” refers to a discontinuity in the medium that sup- 

ports the wave propagation wherein propagation is not allowed. 

Waves that require no material medium, such as electromagnetic 

(EM) waves, fundamentally cannot be blocked because a discon- 

tinuity in a medium does not change the fact that these waves 

require no medium to propagate. Said less formally, there is no 

medium to be blocked. What then is the mechanism that creates 

an optical diffraction pattern? Here, it is shown that secondary ra- 

diation from an obstacle in the path of incident light, which is in- 
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duced by that light, produces a scattering pattern identical to the 

diffraction pattern predicted by Huygens’ description. Thus, for EM 

waves, secondary radiation is the mechanism of diffraction . 

A clear definition of what optical diffraction is and, in partic- 

ular, how it may be different, or not, from scattering is rare in 

the literature. One could propose that diffraction relates to waves 

at sharp edges of two-dimensional (2D) objects, while scattering 

relates to three-dimensional (3D) objects. Such delineation, how- 

ever, leads to ambiguity. For example, it would be difficult to un- 

derstand the striking, albeit qualitative, similarity of the angular 

spread of light in the far-field from an opaque circular disk and a 

transparent sphere of the same diameter. Indeed, some references 

state that there is no logical separation between the two concepts 

[1,4] . An aim of this review is to clearly illustrate that the general 

concepts of diffraction and scattering relate to the same physical 

phenomenon. 

The focus here is on EM waves due to the enduring interest in 

the topic and because these waves require no medium to propa- 

gate. As a consequence, optical shadows can form from destruc- 

tive interference only, and definitely not due to obstacles in the 

medium “blocking” the wave in a mechanical-like sense. A novel 

insight revealed by this description is that the interference process 

creating shadows is always active, whether an object is absorbing 
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or not, is larger than the wavelength or not, and it is fundamen- 

tally linked to the observed phenomena associated with diffraction 

or scattering. It is also shown that these phenomena are produced 

from secondary radiation emanating throughout the entire volume 

of an obstacle. Thus, statements often encountered in the literature 

like “light diffracts around the obstacle,” are misleading as they 

imply only a surface effect. Given the extensive amount of study on 

these concepts, this review cannot summarize all previous work. 

Rather, the focus will be on the mathematical treatments involved 

and their physical interpretations. 

2. Huygens–Fresnel and Babinet principles: conceptual basis 

It is helpful to first review the common description of optical 

diffraction. Begin with the familiar example of light of wavelength 

λ incident upon a rectangular aperture �a , or slit, of width 2 w 

and length 2 � with � � w in an otherwise opaque screen �s in- 

finite in extent. The term “opaque” will refer to a perfectly con- 

ducting screen. Alternatively, a perfectly absorbing screen could be 

considered, but due to complications with the concept of a perfect 

absorber in electrodynamics, this case is not considered, cf. [5,6] . 

Suppose that the incident light is a well-collimated laser beam 

propagating along the positive z -axis. A good approximation for 

this wave is a Gaussian beam with a waist-width of 2 w o [7] . At 

the beam waist, the wave fronts are planar, but the beam pro- 

file is finite in size. In Section 6 , this will allow the intrinsic an- 

gular spreading of the beam with distance from the waist to be 

incorporated in the analysis. At the waist, the beam encounters 

the aperture, which is much smaller than the waist, w o � w and 

w o � � . Consequently, the aperture may – despite use of a beam 

– be regarded as uniformly illuminated by a plane wave following 

the customary treatment. The first objective is to examine the dis- 

tribution of light beyond the aperture across an observation plane 

σ that is parallel to �s located a distance z = d from it as shown 

in Fig. 1 . Also, σ will be assumed to be in the far-field zone of 

the aperture, which is defined by d � kw 

2 /2, where k = 2 π / λ [8] . 

This condition is commonly known as the Fraunhofer approxima- 

tion [1] . 

The incident beam at the aperture appears blocked by �s and 

across σ one observes a spread of light intensity modulated by a 

series of band-like interference maxima and minima, i.e., fringes, 

commonly called the single-slit diffraction pattern. It is thus cus- 

tomary to say that the light “diffracts into the shadow.” The 

diffraction pattern can be approximately calculated in the far-field 

zone from the Huygens-Fresnel principle [1,9,10] . One imagines fic- 

titious point sources of light that span the aperture �a where each 

radiates a spherical wave of wavelength λ into the z > 0 region. 

A point source, located at r ′ in Fig. 1 , is driven in-phase and in 

magnitude with the incident wave across the aperture; this is the 

Kirchhoff approximation [4] . Adding the contributions from these 

sources at r on σ approximates the observed diffraction pattern. 

With reference to Fig. 1 and following the treatment of [1] , the 

normalized pattern in the far-field zone is given by: 

I ( r ) 

I o 
= 

∣∣∣∣
∫ ∫ 

�a 

e ik ̂ r ·r 
′ 
d a ′ 
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2 

, (1) 

where I is the diffracted light-intensity (irradiance) and I o is the 

intensity along the z -axis (beam direction). The fringe structure of 

the pattern is then explained from the phase difference introduced 

by each source-point’s differing location within �a . In other words, 

the Huygens-Fresnel principle explains the diffraction pattern as 

interference from radiation emitted across a free-space region , i.e., 

the aperture. Eq. (1) also shows that the diffraction pattern is the 

absolute square of the Fourier transform of the aperture; another 

characteristic of the Huygens–Fresnel treatment. 

Fig. 1. Diffraction from a slit aperture. An aperture �a in an opaque screen �s 

is illuminated by a plane wave traveling along the positive z -axis. The aperture 

length is much larger than its width, i.e., � � w , whereas both dimensions are 

smaller than the beam waist w o . Spanning the aperture are fictitious “Huygens”

point-sources (red dots) that each emit a spherical wave into the region beyond 

the screen. Adding these waves across σ in the far-field zone gives an approximate 

description for the linear fringes of diffracted light observed on σ . In particular, the 

outcome predicts the observation of light in the geometric shadow of the aperture, 

shown in dash, and is a classic phenomenon associated with diffraction [1] . (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Diffraction is said to occur not only through apertures but also 

around barriers [1] . In 2D, any barrier may be envisioned as a 

screen that is the inverse of, or compliment to, an aperture. The 

complimentary screen to the rectangular aperture is a thin, opaque 

rectangular strip with dimensions 2 w × 2 � . If a screen �s is com- 

bined with its complimentary screen �′ 
s , the result is a complete 

opaque screen �, i.e., �s + �′ 
s = �. Diffraction of a beam from an 

aperture and its complimentary screen is related by Babinet’s prin- 

ciple [1] . As stated by [11] , “the diffraction patterns which are pro- 

duced by two complementary screens are identical excepting the 

central spot, which is diffraction angle zero. ”

A demonstration of Babinet’s principle is instructive wherein 

two distinct scenarios, labeled 1 and 2, are compared. In scenario 

1, an infinite screen �(1) 
s containing aperture �(1) 

a is illuminated 

by the beam and the resulting pattern is observed on σ . In sce- 

nario 2 however, only the complimentary screen is present, �(2) 
s , 

which is illuminated by the same beam and the resulting pattern 

is again observed on σ . If E 1 and E 2 are the scalar light-fields at the 

same point r on σ in scenario 1 or 2 respectively, then Babinet’s 

principle states that [1,3] 

E 1 ( r ) + E 2 ( r ) = E o ( r ) . (2) 

Here, E o ( r ) is the (complex-valued) scalar light-field amplitude of 

the beam at r on σ when neither screen is present, i.e., when 

the beam is freely illuminating σ . Conceptually, one can under- 

stand Eq. (2) from the Huygens-Fresnel principle. As stated, the 

diffracted light ( E 1 ) for scenario 1 from screen �(1) 
s is given in 

Eq. (1) by an integral over the aperture opening , �(1) 
a . In scenario 

2, Eq. (1) provides the diffracted light ( E 2 ) as an integral over the 

planar region of free space not occupied by the complementary 

screen �(2) 
s , which could be regarded as a large aperture �(2) 

a , see 

Fig. 2 . Adding these two surface integrals in Eq. (2) amounts to an 

integral of fictitious Huygens point sources over a complete plane 

� in empty space, and thus, reproduces the incident beam. Note 
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