
Optimizing make-to-stock policies through a robust lot-sizing model

Agostinho Agra a,*, Michael Poss b, Micael Santos c

a CIDMA, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
b UMR CNRS 5506 LIRMM, Universit�e de Montpellier, 161 rue Ada, 34392 Montpellier Cedex 5, France
c Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

A R T I C L E I N F O

Keywords:
Lot-sizing
Make-To-Stock
Robust optimization
Mixed-integer linear programming

A B S T R A C T

In this paper we consider a practical lot-sizing problem faced by an industrial company. The company plans the
production for a set of products following a Make-To-Order policy. When the productive capacity is not fully used,
the remaining capacity is devoted to the production of those products whose orders are typically quite below the
established minimum production level. For these products the company follows a Make-To-Stock (MTS) policy
since part of the production is to fulfill future estimated orders. This yields a particular lot-sizing problem aiming
to decide which products should be produced and the corresponding batch sizes. These lot-sizing problems
typically face uncertain demands, which we address here through the lens of robust optimization. First we provide
a mixed integer formulation assuming the future demands are deterministic and we tighten the model with valid
inequalities. Then, in order to account for uncertainty of the demands, we propose a robust approach where
demands are assumed to belong to given intervals and the number of deviations to the nominal estimated value is
limited. As the number of products can be large and some instances may not be solved to optimality, we propose
two heuristics. Computational tests are conducted on a set of instances generated from real data provided by our
industrial partner. The heuristics proposed are fast and provide good quality solutions for the tested instances.
Moreover, since they are based on the mathematical model and use simple strategies to reduce the instances size,
these heuristics could be extended to solve other multi-item lot-sizing problems where demands are uncertain.

1. Introduction

In this paper we consider a practical problem occurring in an
aluminium extrusion industrial company. The company produces two
main families of products: a family of products representing the main
production activity of the company where a Make-To-Order (MTO)
policy is followed (MTO family), and a family of products whose orders
are typically quite below the established minimum production level. For
this family, the company follows a Make-To-Stock (MTS) policy (MTS
family). The production planning procedure for the MTO family is well
established. However for the MTS family, as the orders are below the
minimum production level, the company must find a solution between
the two extreme cases: wait for new orders of the same product until the
minimum production level is attained, or produce at least at the mini-
mum production level of that item to satisfy the pending orders and store
the leftovers in inventory. Both alternatives have their pros and cons. The
first alternative has the advantage of avoiding stocks. On the other hand,
the backlogging of demand orders may lead to intangible losses.
Conversely, the second alternative has the advantage of a ready

satisfaction of customer needs but generates high holding costs.
Currently, the company gives priority to the MTO family by planing

its production first, and when extra production capacity is available, then
it solves a lot-sizing problem to decide which products from the MTS
family should be produced and defining the corresponding lot-sizes. This
particular lot-sizing problem takes into account not only the pending
orders of each product but also future ones, as the excess quantity pro-
duced will remain in stock until new orders are received. Therefore, it is
necessary to estimate those future client orders. The uncertainty related
to forecasting such future demands represents a risk for the planners
since the inventory costs will depend greatly on such unknown demands.
For industries where holding costs are high (as in the case of our in-
dustrial partner) it is desirable to derive robust solutions that take into
account possible future deviations from the estimated demand values.

Here we address this lot-sizing problem defined for the MTS family of
products, using the available production capacity. We consider both the
deterministic and the robust cases where demands are assumed to belong
to an uncertainty set and we look for the production plan that optimizes
the worst-case scenario. For the production of the MTS family, we
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produce at most one batch of each product, hence, we allow at most one
set-up. Therefore this particular lot-sizing problem is denoted by
LS1S(Lot-Sizing with 1 Set-up). The robust problem is denoted by RLS1S.

Multi-product lot-sizing problems have been receiving a great atten-
tion, for recent publications, see e.g. (Cunha et al., 2017; Macedo et al.,
2016; Sifaleras and Konstantaras, 2017). Frequently, due to the variety of
products and their demand patterns, the companies follow different
production polices for the different products. In some cases, different
policies can even be considered for the same product (see (Zhang et al.,
2013)) in order to satisfy the different demand streams. The decision
between the MTO and the MTS policies was investigated by Zaerpour
et al. (2008) and Altendorfer and Minner (2014). For an overview on
comparison of such approaches see (Olhager and Prajogo, 2012). How-
ever, both MTO and MTS producing processes may share common re-
sources forcing the production planners to coordinate the MTO and MTS
policies (Rafiei and Rabbani, 2012). Examples of problems combining
MTO–MTS policies can be found in different industries, such as food
production systems (Soman et al., 2004) and steel plants (Zhang et al.,
2015).

Several approaches have been proposed, mostly from last decade,
regarding the integration of MTS and MTO policies. Beemsterboer et al.
(2016) study the benefits of not prioritizing policies within a hybrid
planning MTO–MTS approach. In (Beemsterboer et al., 2017a), the au-
thors analyse the benefits of considering flexible lot sizing policies in a
hybrid MTO–MTS approach for a two-product system. In (Beemsterboer
et al., 2017b), the authors propose four methods of integrating
make-to-stock items in the control of a job shop, which they evaluate
using discrete event simulation. Kaminsky and Kaya (2009) propose
heuristics for a multi-item problem where the manufacturer and the
supplier have to decide which items to produce to stock and which to
produce to order. Kalantari et al. (2011) present a decision support sys-
tem for order acceptance/rejection in a hybrid MTO–MTS production
environment. Perona et al. (2009) develop a decision-making approach
to support inventory management decisions in a MTO–MTS environment
for small and medium sized enterprises. Renna (2016) considers a
multistage manufacturing serial system, where a production control
strategy is performed to release MTO andMTS orders. Rafiei et al. (2013)
propose a hierarchical production planning approach for a hybrid
MTO–MTS system that includes both mid-term and short-term produc-
tion planning levels. Rafiei et al. (2014) propose a genetic algorithm for a
multi-site production planning of a hybrid MTO–MTS manufacturing
system.

The MTS planning carries the risk that the forecasted orders may not
materialize. Such risk has been identified before, see (Tang and Musa,
2011). When it is possible, delaying product differentiation can be an
interesting intermediate solution (Gupta and Benjaafar, 2004), but that is
not possible in most practical cases as the one faced by our industrial
partner. For those cases, handling with uncertainty is of main relevance
on MTS environments. To the best of our knowledge only Khakdaman
et al. (2015) applied a robust multi-objective approach based on a set of
scenarios to a hybrid MTO–MTS problem where uncertainty is consid-
ered in suppliers, processes and customers.

The problem considered in this paper occurs as a subproblem of a
hybrid MTO–MTS manufacture system where a hierarchic approach is
followed and priority is given to MTO. The problem focuses on solving
the MTS planning considering the remaining manufacturing capacity.
From its nature, the MTS subproblem considers medium/long-term ho-
rizons where demand uncertainty plays a crucial role when defining lot-
sizings.

A large number of publications has been devoted to the study of
robust lot-sizing problems with demand uncertainty. One of the first
papers on the topic is (Bertsimas and Thiele, 2006), which proposes a
simple conservative approximation of the robust constraints and studies
the structure of the optimal policies. In parallel to that work, another
paper introduced affine decision rules (Ben-Tal et al., 2004), having the
advantage of better approximating the robust constraints. The theoretical

strength of affine decision rules has been studied in subsequent papers,
among which (Iancu et al., 2013). More recent works have sought to
solve the robust problem exactly, by using decomposition algorithms and
dynamically adding constraints to the problem, see (Agra et al., 2016;
Bienstock and €Ozbay, 2008; Gorissen and den Hertog, 2013). Robust
lot-sizing problems and their variants are also addressed in more general
papers dealing with multi-stage robust optimization, see (Delage and
Iancu, 2015) for a survey on these problems. More generally, we refer to
(Peidro et al., 2009) for a survey on papers dealing with uncertainty on
supply chains.

Althoughmotivated by a practical problem, we aim to incorporate the
recent robust optimization techniques into this particular lot-sizing
problem in order to close the gap between the robust techniques for
classical lot-sizing problems and the robust techniques for MTS problems
within hybrid MTO–MTS manufacture systems.

The contributions of this paper are more specifically detailed below.
We introduce a mathematical model for the deterministic case where
future demands are assumed to be known. Our model is different from
the classical ones (see for instance (Pochet and Wolsey, 2006)) mainly
because we suppose that each product has at most one set-up. A Proof
that this particular problem is NP-hard is given. The model is tightened
with valid inequalities.

We develop a robust mixed integer model where demands are
considered uncertain and belong to intervals. The uncertainty set is
further constrained by budget constraints that limit the number of
possible periods where a demand can deviate from its nominal value
preventing the solutions to be too conservative, obtaining the well-
known budgeted uncertainty set introduced in (Bertsimas and Sim,
2004). We approximate the resulting robust constraints using the con-
servative approach of (Bertsimas and Thiele, 2006), rather than the
computationally demanding affine decision rules from (Ben-Tal et al.,
2004) or exact approaches used in (Agra et al., 2016; Bienstock and
€Ozbay, 2008).

Since the problem is NP-hard, and we aim to develop approaches that
can be used both with commercial and non-commercial (slower but free)
solvers, we propose two heuristics. The first heuristic, called Elite Heu-
ristic, is based on a pre-selection of a set of candidate products. The
problem is solved for that restricted set of products using a mixed integer
linear programming solver based on the strengthened formulation. The
heuristic incorporates the practical rules used by the company to choose
the products to produce. The second heuristic, denoted as the Tournament
Heuristic, runs in several iterations. At each iteration, the set of candidate
products is partitioned into smaller subsets and the problem is solved
optimally for each subset. Only the selected products of each subset are
considered in the next iteration. The process is repeated until a final
subset of products is solved or a number of iterations is attained.

To test the deterministic and robust formulations and the matheur-
istics we use the non-commercial solver Cbc from Coin-OR (2016), which
is referred to as one of the fastest solvers among the non-commercial ones
(Meindl and Templ, 2012). The test set was built from the real data
provided by our industrial partner.

As the proposed heuristics use simple strategies to reduce the number
of items and, consequently, the size of the instances, such heuristics can
be easily adapted to other multi-item lot-sizing problems. It suffices to
adapt the mathematical model to the particularities of the other prob-
lems. We also show, that in order to derive solutions that take into ac-
count future demands variations, robust strategies could be embedded
into the mathematical model, and therefore into the heuristics, but of
course such strategies would need further computational testing in other
cases and contexts.

The outline of the paper is as follows. In Section 2 we introduce a
mixed-integer formulation to model the practical LS1S problem assuming
the demands are deterministic. The formulation is enhanced and a Proof
of NP-hardness is given. Then, in Section 3, we derive the robust model
for the case where demands belong to an uncertainty set. In Section 4 we
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