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A B S T R A C T

In this paper, we consider the minmax robust lot-sizing problem (RLS) with uncertain lead times. We explore
the uncapacitated (RULS) and capacitated (RCLS) cases with and without lost sales, with discrete scenarios. We
provide a complexity analysis proving that robust lot sizing problems are NP-hard even in the case with two
scenarios. For each case, a mixed integer programming model is proposed. We show that several optimality
conditions for the deterministic cases provided in Wagner and Whitin (1958), Aksen et al. (2003), as well as a
classical facility location based model, are no longer valid. However, we generalize these properties to the lot
sizing problem with deterministic but dynamic lead times and demonstrate their validity. Numerical
experiments on instances with up to 400 periods and 25 scenarios reveal that, against all expectation, the
capacitated version of the robust lot sizing problem is easier to solve than the uncapacitated version.

1. Introduction

The lot sizing problem decides when and how much to produce to
satisfy the demand while minimizing the total costs. Since Wagner and
Whitin (1958), a lot of research has been interested in this problem.
For the single-item lot sizing problems, the readers can refer to the
excellent review presented in Brahimi et al. (2006). The authors
present four possible formulations used in literature. These formula-
tions are the aggregate, disaggregate or facility location formulation,
shortest path proposed by Evans (1985) and finally a formulation
without inventory variables using the fact that the inventory can be
expressed in function of the other variables of the model.

Most lot sizing problems are hard to solve. Some complexity results
can be found in Florian and Klein (1971). They prove that the single
item capacitated problem is NP-hard for quite general objective
functions. Problems with concave cost functions and no capacity limits
(Wagner and Whitin (1958) or constant capacities Florian and Klein
(1971)) are solvable in polynomial time. Also lot sizing with convex
cost functions and no setup cost is polynomially solvable. The
deterministic ULS problem can be solved in T T( log ) according to
Wagelmans et al. (1992). Akbalik and Rapine (2013) isolate some cases
of ULS with time dependent fixed batch costs being NP-hard. Hellion
et al. (2012), on the other hand, report a polynomial case for single
item capacitated lot sizing problem with minimum order quantity and
concave costs solved by a T( )5 time algorithm.

In many situations the assumption of known, deterministic demand
and lead time is not necessarily realistic. The demand for each time

period is not known in advance. The lead time of items can be
uncertain for several reasons such as machine breakdowns, quality or
transportation issues. Significant research is developed on optimal
inventory policies by assuming that demands are independent and
follow certain distributions. In Clark and Scarf (1960), the classical
s S( , ) policies are considered. An extension to demand uncertainty with
a set of scenarios is presented in Guan and Miller (2008). A two-stage
minimax RULS with interval uncertain demands is studied in Zhang
(2011). Single-item single-period problems with uncertain lead times
are solved by methods based on the well known Newsvendor model
(Arrow et al. (1951)). The assembly system with multiple periods,
constant demand and probabilistic lead times are investigated in
Dolgui and Ould-Louly (2002), Louly et al. (2008). Louly and Dolgui
(2013) propose a general analytical solution for any discrete probability
distributions of lead time on a single item inventory with a fixed
demand problem. Altendorfer (2015) extends this work by the sto-
chastic demand occurrence and timing.

In this paper we address several extensions of the minmax robust
lot sizing problem (RLS). RLS consists of planning the production of a
single item with a known demand over a horizon of T periods. The lead
time of an order made in a period t depends on the period and the
scenario. Setup and production costs are computed as a function of the
order date. The products are kept in the inventory with a holding cost
between the delivery date and the consumption date of the demand.
The objective is to determine a production planning to minimize the
total setup and production costs as well as the maximum holding cost
over all scenarios.
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This paper has several contributions. First, to the best of our
knowledge, the robust lot sizing problem under lead time uncertainties
is addressed for the first time. Second, we provide a complexity analysis
showing that minmax robust ULS even in the case with only two
scenarios is NP-hard. Since minmax robust ULS generalizes the
versions with capacity constraint, and with and without lost sales, they
are also NP-hard. As an obvious extension, we also demonstrate that
the optimality condition of Wagner and Whitin (1958) is not valid for
these problems. Aksen et al. (2003) give complementary optimality
conditions for the case with lost sales and certain lead times. We bring
a counterexample establishing the evidence that these conditions are
not valid in the case with uncertain lead times under discrete scenarios.
On the other hand, we generalize these properties to the lot sizing
problem with deterministic but dynamic lead times, which corresponds
to the case with only one scenario. Finally we extend our study to the
capacitated cases.

2. Mathematical formulation of RULS without lost-sales

As mentioned above, several formulations are proposed for ULS
and CLS problems in the literature. Through this section, we describe
Mixed Integer Linear Models solving the minmax robust ULS and CLS.

2.1. The aggregate formulation of RULS problem

In the following, we present an aggregate formulation of the RULS
problem. The notations are given below:

Parameters:
T the total number of periods in the horizon
Ω the set of scenarios
st setup cost (fixed cost) of production (procurement)

in period t
ct production unit cost at period t
ht unit inventory holding cost in period t
Capat available capacity at period t
dt deterministic demand in period t
Lt
ω random lead time for each scenario ω in Ω at each

period t T∈
Variables:

In model (1)–(7), four different decision variables are used. Xt
ω and It

ω

are the quantity of products delivered and inventory level at period t in
scenario ω, respectively. Zt is the quantity ordered at the period t and
finally, Yt is the binary variable taking the value 1, if an order is made
at period t. It is worth of noting that the only binary variable of the
model (Yt) is independent of the scenarios.

The aggregate formulation (noted AG-RULS) is stated as follows:
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The objective function (1) minimizes the total setup and production
costs as well as the maximum of the inventory holding costs over all
scenarios. Constraints (2) are the inventory balance equations.
Constraints (3) relate the binary setup variables Yt to the continuous

order production variables Zt. The relation between the ordered and
delivered quantities is defined by the constraints (4). Therefore,
depending on the lead time, the scenario is that an order placed at
period t will be received at t t L′ = + t

ω. We underline that several orders
made at different dates can be received at the same time. That is why,
the received quantity is the sum of the orders having the same delivery
date. Constraints ((5), (6) and (7)) give the definition domains of the
variables.

2.2. The complexity of the RLS problem

Zhang (2011) reports that a RLS problem is NP-hard when the
uncertainty is on the demand. Several robust problems are proven to be
NP-hard even with two scenarios in Kouvelis and Yu (1996). In the
following, we show that a robust uncapacitated lot-sizing problem with
uncertain lead times and discrete scenarios is NP-hard even in the case
with two scenarios.

Theorem 1. A robust single-item uncapacitated lot - sizing problem
with discrete-scenario lead times is NP - hard even in the case Ω| | = 2.

Proof. We will use the following polynomial transformation from a 3
dimensional matching problem which is known to be NP-complete
(Karp (1996)).

Let J be a time interval where all the deterministic demand occurs,
and I be the time interval in which, if an order is placed, it is received in
J. In other words if j i J( ) ∈ω where j i i L ω Ω( ) = + ∀ ∈ = {1, 2}ω i

ω ,
then i I∈ . Let the demand of any period in J be equal (d d j J= , ∀ ∈j ),
unit holding cost for all periods in J be H, and all setup and production
costs be i I0 ∀ ∈ .

Suppose J J J= =1 2 , and a triple(μ i j i j i= ( , ( ), ( ))1 2 ) is the period i
and two periods that a quantity ordered in i can be received following
scenario 1 or 2, respectively. For a triple μ i j i j i I J J= ( , ( ), ( )) ∈ × ×1 2 1 2,
i I j i J∈ , ( ) ∈1 1 and j i J( ) ∈2 2.

There is a solution to the robust single-item uncapacitated lot-sizing
problem with zero cost, if and only if there exists a 3-dimensional
matching M I J J⊂ × ×1 2 with M J| | = | |.

1. It is obvious that if there is a 3-dimensional matching M such that
M J| | = | |, there is a solution to the robust single-item uncapacitated
lot-sizing problem with zero cost. According to the definition of 3-
dimensional matching, if there are two triples μ and μ′ in M such
that μ i j i j i= ( , ( ), ( ))1 2 , μ i j i j i′ = ( ′, ′ ( ), ′ ( ))1 2 and μ μ≠ ′, then
i i j i j i≠ ′, ( ) ≠ ′ ( )1 1 and j i j i( ) ≠ ′ ( )2 2 . That implies

j i j i J⋃ ( ) = ⋃ ( ) =
μ i j i j i M μ i j i j i M=( , ( ), ( ))∈

1
=( , ( ), ( ))∈

2
1 2 1 2

For all triple μ i j i j i M= ( , ( ), ( )) ∈1 2 , it is enough to order quantity d
at dates i which will be received either at j i( )1 or j i( )2 , following the
scenario. In any scenario, all the demand in J is covered by the just in
time deliveries. Therefore, for any scenario, the sum of all setup,
production and holding costs will be zero.

2. If there is no a 3-dimensional matching M such that M J| | = | |, then
M J| | < | |. Let J J⊂M

1 and J J⊂M
2 be subsets of J1 and J2 induced by

M. We have

J J J J| | ≤ and | | ≤M M
1 1 2 2

with at least one of the inequalities being strict. For the sake of
simplicity, let J J| | <M

1 1. In that case there exists at least one j∼ such
that j J∈∼

1 but j J∉∼ M
1 . In a feasible robust single-item uncapaci-

tated lot-sizing solution, an order should be placed at date i I∈∼
such

that i L j+ ≤∼ ∼
i
1∼ and i L j+ ≤∼ ∼

i
2∼ with at least one of the inequalities

being strict. The cost triggered by this order is

Δ H j i L H j i L= max{ × ( − ( + )), × ( − ( + ))}∼ ∼∼ ∼
j i i1,2

1 2∼ ∼∼

As Δmin > 0j∼ , the cost of any feasible solution to the Robust single-
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