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Consider the following classical search problem: a target is located on a line at distance 
D from the origin. Starting at the origin, a searcher must find the target with minimum 
competitive cost. The classical competitive cost studied in the literature is the ratio 
between the distance travelled by the searcher and D . Note that when no lower bound on 
D is given, no competitive search strategy exists for this problem. Therefore, all competitive 
search strategies require some form of lower bound on D .
We develop a general framework that optimally solves several variants of this search 
problem. Our framework allows us to achieve optimal competitive search costs for 
previously studied variants such as: (1) where the target is fixed and the searcher’s cost at 
each step is a constant times the length of the step, (2) where the target is fixed and the 
searcher’s cost at each step is the length of the step plus a fixed constant (often referred 
to as the turn cost), (3) where the target is moving and the searcher’s cost at each step is 
the length of the step.
Our main contribution is that the framework allows us to derive optimal competitive 
search strategies for variants of this problem that do not have a solution in the literature 
such as: (1) where the target is fixed and the searcher’s cost at each step is α1x + β1
for moving distance x away from the origin and α2x + β2 for moving back with constants 
α1, α2, β1, β2, (2) where the target is moving and the searcher’s cost at each step is a 
constant times the length of the step plus a fixed constant turn cost. Notice that the latter 
variant can have several interpretations depending on what the turn cost represents. For 
example, if the turn cost represents the amount of time for the searcher to turn, then this 
has an impact on the position of the moving target. On the other hand, the turn cost can 
represent the amount of fuel needed to make an instantaneous turn, thereby not affecting 
the target’s position. Our framework addresses all of these variations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following classical search problem: a target is located on a line at distance D from the origin. Starting at 
the origin, a searcher must find the target with minimum competitive cost. The classical competitive cost studied in the 
literature is defined as the ratio between the distance travelled by the searcher and D . This problem and many of its variants 
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have been extensively studied both in mathematics and computer science. For an encyclopaedic overview of the field, the 
reader is referred to the following books on the area [2,3,19]. Techniques developed to solve this family of problems have 
many applications in various fields such as robotics, scheduling, clustering, or routing to name a few [9,10,16,22,25,26,28]. 
In particular, solutions to these problems have formed the backbone of many competitive online algorithms (see [11] for a 
comprehensive overview).

A search strategy for the problem of searching on a line is a function S(i) = (xi, ri) defined for all integers i ≥ 1. At 
step i, the searcher travels a distance of xi on ray ri ∈ {left, right}. If he does not find the target, he goes back to the origin 
and proceeds with step i + 1. Let D be the distance between the searcher and the target at the beginning of the search. 
Traditionally, the goal is to find a strategy S that minimizes the competitive ratio C R(S) (or competitive cost) defined as the 
total distance travelled by the searcher divided by D , in the worst case. If D is given to the searcher, any strategy S such 
that S(1) = (D, left) and S(2) = (D, right) is optimal with a competitive ratio of 3 in the worst case. If D is unknown, a 
lower bound λ ≤ D must be given to the searcher, otherwise the competitive ratio is unbounded in the worst case. Indeed, 
if an adversary places the target at a distance ε > 0 from the origin and the first step taken by the algorithm is ξ > 0 in the 
wrong direction, the ratio ξ/ε cannot be bounded. Therefore, all competitive search strategies require some form of lower 
bound on D in order to achieve a constant worst case competitive cost only with respect to D .

Let Lef t = {i | ri = left} and Right = {i | ri = right}. To guarantee that, wherever the target is located, we can find it 
with a strategy S , we must have supi∈Lef t xi = supi∈Right xi = ∞. We say that S is monotonic if the sequences (xi)i∈Lef t and 
(xi)i∈Right are strictly increasing. The strategy S is said to be periodic if r1 �= r2 and ri = ri+2 for all i ≥ 1. We know from 
previous work (see [4,19,27] for instance) that there is an optimal strategy that is periodic and monotonic. Let us say that a 
strategy is fully monotonic if the sequence (xi)i≥1 is monotonic and non-decreasing. We can make the following assumption 
without loss of generality.

Periodic-monotonic assumption. There exists an optimal search strategy that is periodic and fully monotonic.

In this paper, we introduce a general framework to resolve several variations of this classical search problem. Our frame-
work allows us to match optimal competitive search costs for previously studied variants. The first one is the classical 
problem where the target is fixed and the searcher’s cost at each step is a constant times the distance travelled. This was 
first studied by Gal [18,19] and subsequently by Baeza-Yates et al. [4]. Given a lower bound of λ on D , an optimal strategy, 
sometimes called the power-of-two strategy, is the following: xi = 2iλ (i ≥ 1). At step i, if i is even, move to xi and then 
return to the origin. If i is odd, move to −xi and then return to the origin. All known search strategies exhibit this alternat-
ing behaviour. The competitive cost of this strategy is 9 in the worst case. With our framework in this setting, our search 
strategy is xi = (i + 1)2iλ, which also has a competitive cost of 9 in the worst case (refer to Lemma 1). Thus, although our 
framework achieves optimal worst case competitive costs, our strategies are not identical to those in the literature.

Another variant we solve with our framework is where the target is fixed and the searcher’s cost at each step is the 
distance travelled plus a fixed constant (often referred to as the turn cost). This was first studied by Alpern and Gal [3, 
Section 8.4]. They provided a strategy with expected competitive cost 9 + 2t/λ. They left open the question of whether this 
is optimal. Demaine, Fekete and Gal [14] addressed a deterministic variant of the problem. Their strategy is xi = 1
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(i ≥ 1). The total cost of this strategy is 9D + 2t in the worst case. The competitive cost of their algorithm only with respect 
to D is 9 + 2t/D . However, as was noted above, the ratio t/D can be unbounded. As such, their strategy is not competitive 
with respect to only D (by the adversarial argument presented above). However, their search strategy is competitive with 
respect to the worst case cost of any online search strategy. Notice that when there is a cost of t > 0 charged for each turn 
made by the searcher, in essence t + D is a lower bound on the worst case cost of any online search strategy. This is because 
in the worst case, any online strategy may start in the wrong direction and have to make at least one turn. Therefore, their 
search strategy is competitive with respect to t + D as opposed to just D . Surprisingly, with our framework, we prove that 
when t/2λ ≤ 1, the optimal competitive cost (only with respect to D) is still 9 in the worst case (refer to Lemma 1). When 
t/2λ ≥ 1, the optimal search cost is(
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(refer to Theorem 2). Moreover, our framework allows us to resolve the more general variant where the target is fixed and 
the searcher’s cost at each step is α1x + β1 for moving distance x away from the origin and α2x + β2 for moving towards 
the origin with positive constants α1, α2, β1, β2 such that α1 + α2 > 0 (refer to Section 4.1).

The third variant that is encompassed by our framework is one where the target is moving and the searcher’s cost at each 
step is the distance travelled. This was first studied by Gal [19]. Suppose that the searcher travels at speed 1 and the target 
travels at speed 0 < w < 1. Note that the searcher must be able to travel strictly faster than the target in order to guarantee 

the existence of a successful search strategy. Given a lower bound of λ on D , an optimal strategy is xi =
(
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)i
λ (i ≥ 1). 

The competitive cost of this strategy is (3+w)2

(1−w)3 in the worst case. With our framework, we find the strategy
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