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a  b  s  t  r  a  c  t

Determining  optimal  bidding  strategies  in  a competitive  electricity  market  to maximize  the  profit  of  each
bidder  is a challenging  economic  game  problem.  In  this paper,  it  is  formulated  as  a  bi-level  optimization
problem  in  which,  in the  lower  level,  the community’s  social  welfare  is  maximized  by  solving  a power  flow
problem  while,  in  the upper  level,  the  profits  of  individual  bidders  are  maximized.  In this  bidders’  game,
instead  of using  a set of discrete  strategies  as is  usual,  we  consider  continuous  functions  as  strategies.  To
solve  the  upper-level  problem,  two  co-evolutionary  approaches  are  proposed  and,  for  the  lower  level,  an
interior  point  algorithm  is  applied.  Three  IEEE  benchmark  problems  in  four different  scenarios  are  solved
and  their  results  compared  with  those  obtained  from  two conventional  approaches  and  the  literature
which  indicate  that  the  proposed  approaches  have  some  merit  regarding  quality  and  efficiency.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Over the last decade, the electricity markets in many coun-
tries have become more decentralized and deregulated in order
to increase their economic efficiency and reduce costs. As a con-
sequence, they are no longer monopolistic but being opened up
to competition among both suppliers and consumers [1–3]. In this
situation, suppliers, i.e., generator companies (GENCOs) and con-
sumers (e.g., large industries, distributor companies, residential
loads, etc.) simultaneously submit their bids to an independent
system operator (ISO) that determines the market clearing price
(MCP) and power dispatch (PD) of each winning bidder by solving
an optimal power flow (OPF) problem, with the aim of finding an
optimal operating point of a power system by maximizing its com-
munity social welfare (CSW) subject to its network and physical
constraints. The CSW is defined as the difference between the prof-
its obtained by trading electricity to consumers and the expenses
of purchasing it from GENCOs. Once a winning bidder is informed
about the MCP  and its allocated quantity of PD, its profit is calcu-
lated based on its actual cost and revenue. Note that the MCPs of
all bidders are the same when transmission congestions (TCs) are
ignored but, if they are considered, the MCPs vary significantly from
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location (or node) to location which is called the locational market
price (LMP) [4].

As the profit of a bidder depends on both its own submitted
bid and those of its rivals, each bidder plays a game by optimizing
its own bidding behavior with respect to those of its competitors
as well as power system constraints. An excessively high bid by
a player may  not be selected by the ISO while a lower one may
not cover its own costs. Therefore, it is a challenging optimization
problem to select an appropriate bidding strategy for maximizing
the profits of all bidders [5].

During the last decade, numerous studies have been conducted
to determine the optimal bidding strategy based on different
market models, of which optimization and game theory-based
equilibrium models are the most popular [2,6]. In optimization, the
problem is solved for a particular player by ignoring other players’
bidding behaviors [1]. In this process, a GENCO or consumer first
forecasts the MCP  and rivals’ bidding strategies, and then solves a
profit maximization problem using an appropriate algorithm, such
as dynamic, fuzzy linear or stochastic dynamic programming [7].
However, estimating the MCP  and rivals’ bidding strategies is very
difficult and, even after doing it, the actual profits may  significantly
vary from predictions as it is assumed that the LMP  is independent
of the players’ submitted bids [8].

On the contrary, in a game theory-based equilibrium model, a
player optimizes its bidding strategy by investigating the interac-
tions of its rivals’ bidding behaviors. In it, a GENCO or consumer is
represented as a player, economic benefits constitute payoffs and
players’ options are treated as strategies while it is assumed that
all players are rational and have some common knowledge of the
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Nomenclature

i, j, n, p, g Indices of GENCO, consumer, player, individual of
a sub-population, and current generation number,
respectively;

K ;Total number of transmission grid nodes ;
I ;Total number of generators ;
J ;Total number of loads (customers) ;
N ;Total number of bidders in market ;
Ik Number of generators at node
Jk Number of loads at node
Pi Real power injection by generator
Pmin
i
, Pmax
i

Minimum and maximum real power limits of
qj Real power demand for load
ı1 Voltageangle at reference bus with fixed value of 0;
ık Voltageangle (in radians) at node
Fkm Real power flow through branch connection from

nodes
BR Set of all distinct branches of
PNetInjectk Net injected real power at each node
xkm Reactance for branches
Bkm Susceptance
FU
km

, Lower and upper limits of real power flow for
branches

ai, bi, ci Cost coefficients of
′
bi,

′
ci Quiescent coefficients of marginal cost coefficient at

ith generator;
dj, ej Coefficients of jth consumers’ utility function;
′
dj,

′
ej Quiescent coefficients of jthdemand curve;

kgi Bidding coefficient of ith generator;
kdj Bidding coefficient of jth consumer;

kmingi , kmaxgi
Lower and upper limits of ith generator;

kmin
dj
, kmax
dj

Lower and upper limits of

�k Locational marginal price (LMP) at
�Pi, �dj LMPs of ithgenerator and jthconsumer, respectively

actual cost function of each bidder from historical data. Each player
ultimately chooses one strategy from a set of known ones which, as
each has a payoff assigned to it by the profit function, means that
the optimal solution can be reached via the Nash equilibrium (NE).
A NE is based on the strategies of all players in which one player
cannot increase its payoff by changing its own strategy while the
others’ strategies remain the same, with the solution known as a
saddle point of the equilibrium model. This approach is very popu-
lar among researchers and practitioners for solving energy market
problems [6,9,10].

An equilibrium model is classified as a: (i) Bertrand game; (ii)
Cournot game; (iii) Stackelberg model; and (iv) supply function
equilibrium (SFE). In the Bertrand game, the market price is con-
sidered a bidding parameter in which it is assumed that all players
have a constant unit cost, with capacity constraints ignored when
competing on the price offered to consumers. In both the Cournot
and Stackelberg models, the amount of power to be produced by
each player is considered a strategic variable, with the difference
between these approaches being that the former allows the strate-
gic variables of all players to be simultaneously improved while, in
the latter, the leader improves its strategic variable first and then
the followers sequentially change theirs. As a consequence, because
all players in the Stackelberg model do not choose their quantities
simultaneously, the largest one acts as the leader and can manip-
ulate the market. In the SFE model, a linear function is used for
each bidder’s strategic variable, where the coefficients of the sup-

ply function are simultaneously improved to reach the maximum
profit [11].

Apart from the above classifications, the players in an equi-
librium model can be either cooperative or non-cooperative. In
the former, the participants coordinate their strategies in order
to maximize the profits of all players while, in the latter, a player
maximizes its own profit regardless of those of its rivals, with no
commitment to coordinating their strategies [12]. Of the above
methods, the non-cooperative SFE game model is more appeal-
ing due to its realistic characterisations of the strategic variables
which reflect real-life bidding rules in the electricity market [1,13].
It is widely used both in literature and practice [11]; for example,
English and Welsh wholesale electricity spot markets [6].

Solving a non-cooperative SFE model has gained a great deal
of attention over the last decade, with bi-level programming tech-
niques widely used. In it, each independent player maximizes its
profit in the upper level while the ISO’s CSW is maximized in
the lower level by solving a nonlinear OPF optimization prob-
lem [14–16]. Each decision entity independently optimizes its own
objective but is affected by the actions of other entities in a hierar-
chy. However, this bi-level problem is a challenging optimization
problem because it contains a nested optimization task within the
constraints of another optimization problem [14]. It becomes more
complex in the presence of difficult mathematical properties of the
problem, such as multi-modality, non-convexity, non-differentially
and others. This problem is inherently harder to solve than tradi-
tional mathematical programs, as pointed out in [17]. Therefore,
compared with classical techniques, various evolutionary algo-
rithms (EAs), such as genetic algorithms (GAs) [18–24], differential
evolution (DE) [25–28], evolutionary programming (EP) [29] and
a bat-inspired algorithm [1,30] are now generating interest in the
research community for solving this problem. In these algorithms,
a conventional iterative (IT) approach is used to determine the opti-
mal  bidding strategies of all participating players, with the bidding
strategy of each updated sequentially by one in an iteration to max-
imize its profit while those of its rivals remain unchanged. This
process continues until the bidding strategy of a player improves,
with the algorithm terminated as soon as the NE is reached [1].
However, as it solves the bidding problem of each bidder one after
the other, it may  take too long when there are many bidders which
is one of the issues addressed in this paper. Moreover, as most of the
abovementioned methods, a game based bidding strategies were
used that the bids were represented as discrete quantities such as
bidding high, bidding medium or bidding low, the payoff matrices
were easily determined by computing all possible combinations of
strategies. However, in reality, a player in the energy market sub-
mits its bid within a given range [31] that results to the size of
payoff matrix becomes infinite and impossible to evaluate all the
combinations [32].

In this paper, a non-cooperative bi-level SFE model of an
electricity market is considered, in which the bidding strategies
represented as the supply functions of the bidders instead of a
set of known discrete strategies as is usually applied. We  develop
two co-evolutionary (CE) approaches for solving the upper-level
problem, the first is based on a real-coded GA and the other on
a self-adaptive DE. In both variants, each bidder’s strategies are
evolved in a sub-population with exchanging information among
these subpopulations to find the overall best solutions. The lower-
level problem is formulated as an OPF problem and solved using
an interior point (IP) algorithm with the aim of maximizing the
CSW considering power system constraints. In addition, the non-
convex OPF problem is formulated as a strictly convex quadratic
programming (SCQP) using the linear formulation of the power
flow constraints with the quadratic cost function. In the SFE model,
both GENCOs and consumers act as independent players that max-
imize their own profits considering the interactions of their rivals.
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