Weighing up the evidence for sound symbolism: Distributional properties predict cue strength

Chris Westbury, Geoff Hollis, David M. Sidhu, Penny M. Pexman

Abstract

It is well-established that there are relationships between word meaning and certain letters or phonemes, a phenomenon known as sound symbolism. Most sound symbolism studies have relied on a small stimulus set chosen to maximize the probability of finding an effect for a particular semantic category. Attempts to assign weights to sound symbolic cues have been limited by a methodology that has relied largely on forced contrast judgments, which do not allow systematic assignment of weights on the sound symbolic cues. We used a novel research approach designed to allow us to assign weights to sound symbolic cues. Participants made binary yes/no judgments about thousands of randomly-generated nonwords, deciding if they were good examples for each of 18 different semantic categories. Formal cues reliably predicted membership in several of those categories. We show that there is a strong inverse relationship between the average beta weight assigned to a phonological feature, phoneme, or letter, and the frequency of that cue. Our results also extend claims about the source of sound symbolic effects, by demonstrating that different poles of the same semantic dimension differ in their predictability from form cues; that some previously unsuspected dimensions show strong symbolic effects; and that features, phonemes, and letters may all contribute to sound symbolism.

Introduction

In his Cratylus dialogue, Plato gives Socrates the following words:

“Must we not begin […] with letters; first separating the vowels, and then the consonants and mutes, into classes, according to the received distinctions of the learned; also the semivowels, which are neither vowels, nor yet mutes; and distinguishing into classes the vowels themselves? And when we have perfected the classification of things, we shall give them names, and see whether, as in the case of letters, there are any classes to which they may be all referred; and hence we shall see their natures, and see, too, whether they have in them classes as there are in the letters; and when we have well considered all this, we shall know how to apply them to what they resemble—whether one letter is used to denote one thing, or whether there is to be an admixture of several of them; just, as in painting, the painter who wants to depict anything sometimes uses purple only, or any other color, and sometimes mixes up several colors.”

[Plato, 360 BCE/1892]

A range of evidence (reviewed below) suggests that the sound symbolic associations Socrates was discussing, in which certain phonemes seem better suited as labels for certain meanings, are real, at least for some semantic categories. This evidence stands against one aspect of the “arbitrariness of the sign” (Saussure, 1916/1983), namely that no particular phoneme is more or less appropriate for any particular meaning. However, a variety of studies have shown that phonemes seem to have inherent associations with particular kinds of meanings, which suggests that such a discussion is viable and raises the possibility that these associations have affected language evolution (e.g., Berlin, 1994; Blasi, Wichmann, Hammarstrom, Stadler, & Christiansen, 2016; Johansson & Zlatev, 2013; Tanz, 1971; Ultan, 1978). Most notably, these
phoneme-meaning associations include the categories sharp/round and large/small, as we review in the next section. However, there is still uncertainty as to which particular phonological features, letters, or phonemes are the best predictors of these dimensions, how they are weighted, how they are related, and why they are the best, in part due to the methodological limitations of much previous work.

Several associated questions remain open: Is there any system-aticity as to which linguistics features can act as sound symbols? How general are the categories in which sound symbolic effects can be found? Are the predictors of one pole of the dimensions the same (with reversed sign) as the predictors of the other pole, or are the poles separately symbolized? Are all predictors of semantic dimensions equal in their predictive force? Are the effects driven by phonological features, phonemes, graphemes, or some combination? Do biphones or bigrams contribute to the effects? If so, how strongly? Are all dimensions equivalent in their reliance on formal characters (phonological features, phonemes, or letters), or are different semantic dimensions differentially sensitive to these different formal characters? When evidence from features, phonemes, and letters are in conflict, is evidence from one stronger than from the other? Is the answer the same for all semantic dimensions? In this paper, we begin to address all these questions, using a large-scale study in which hundreds of partici-pants classified thousands of nonword strings for their suitability as exemplars of 18 semantic categories.

Background

One of the best-known early demonstrations of sound symbol-ism was Köhler’s (1929, 1947) report (building on closely-related observations made by Usnadze, 1924) that people had very strong intuitions about whether maluma (in 1947, or baluma in 1929)\(^1\) or takete was a better name for a round or spiky shape. Köhler found that most of his participants thought that maluma was a better name for round things and takete a better name for spiky things, a result that has been much replicated (Davis, 1961; Holland & Wertheimer, 1964; Maurer, Pathman, & Mondloch, 2006; Nielsen & Rendall, 2011; Ramachandran & Hubbard, 2001; Sidhu & Pexman, 2016).\(^2\) Sapir (1929), following up experimentally on an idea in Jespersen, 1925, undertook a related experiment in which vowels were manipulated. Sapir limited himself “to the meaning contrast ‘large’: ‘small’ as offering the most likely chance of arriving at relatively tangible results” (p. 226). Using a large number of participants, he showed that people preferred an open-front vowel a (/æ/) over a closed-front vowel i (/i/) in labelling large things. This was later extended to the front-back dimension, with the finding that individ-uals preferred front vowels (e.g., /ɪ/) when labelling small shapes, and back vowels (e.g., /s/) when labelling large shapes (Newman, 1933).

The results of these studies have been frequently replicated. However, there are five problems with the reliance on the field on Köhler and Sapir’s paradigm of forced choice experiments with a small number of contrasting strings pre-selected by the experi-

\(^1\) We have confirmed that the change from baluma to maluma occurred between the 2nd and 4th printings of the first American (1929) edition of Köhler’s book. The 1st and 2nd printings occurred in the same month: April 1929. The 3rd printing (a copy of which we have not yet been able to locate) occurred in August 1929 and the 4th in October 1929. Since it is unusual to allow author edits of the same edition of a book between printings and we are aware of no comment by Köhler about this apparent change in his intuitions, we conclude that the early 1929 appearance of the nonword baluma was most likely a printing error. Thanks to Jan-Olaf Svantesson for making us aware that the change occurred between printings of the first edition rather than between editions (as implied in Westbury, 2005).

\(^2\) We have omitted Westbury (2005) from this list as repeated failures to replicate the reported effect have cast that effect into doubt (see Westbury, in press).

1. Because mil seemed like a good name for a small thing (a true positive) but mal had no interpretation either way (unclassifiable).
2. Because mal seemed like a good name for a large thing (a true positive) but mil had no interpretation (unclassifiable).
3. Because mil seemed like a poor name for a large thing (a true negative) but mal seemed like a good name (a true positive).
4. Because mal seemed like a poor name for a small thing (a true negative) but mil seemed like a good name (a true positive).
5. Because (as is usually assumed) mil and mal were both true positives in their respective categories.

These five possibilities are not exhaustive, because they do not take into account any considerations of quantity. Even in the fifth and normally assumed ‘best case’, we do not know from seeing a consistent response if mil and mal are good representatives of their respective categories, or (as we will argue from evidence later in this paper) mediocre representatives that differ just sufficiently to enable a consistent forced-choice to be made. As noted by Tukey (1969), it is very difficult to make theoretical scientific progress after merely noting a difference if we do not also quantify the size of that difference.

A third problem is that experiments relying on pre-selected contrasting strings are really experiments in ‘intuition matching’. Köhler’s and Sapir’s experiments were not just a demonstration of sound symbolism; they were simultaneously a demonstration of the fact that other people share intuitions about sound symbolism. Of course, ultimately, sound symbolism must always rely on intuition, since the phenomenon is defined in terms of phen-omenology. However, intuition matching in experimental design is scientifically dissatisfying for several reasons. One is that our conscious intuitions about a phenomenon may provide very little insight into the true nature of the phenomenon (consider, for example, the history of armchair theorizing about the nature of color prior to Newton). To the extent that a phenomenon is more complex or stranger than we are able to intuit, intuition matching experiments must leave us wondering how much of the phe-nomenon remains unexplained. By definition what remains to be explained lies outside of our intuitions. The second reason it is dis-satisfying is that intuition matching also limits our ability to explain why the phenomenon of sound symbolism occurs. If we do not know why we ourselves feel that k is a good symbol of spiky things, asking other people if they feel the same way is not likely to shed any light on the question of why we all share that intuition. Much of the work on sound symbolism to date has served only to document that the phenomenon exists.

The last two problems with forced choice experiments are closely related to this intuition-matching problem. The fourth
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات