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a b s t r a c t 

In earlier work, we found retrospective optimization to be effective for setting policy parameters in sup- 

ply chains with relatively simple structures. This method finds these parameters by solving an integer 

program over a single randomly generated sample path. Initial efforts to extend this methodology to 

more complex settings were in many cases too slow to be effective. In response to this, in this research 

we combine retrospective optimization over a relatively short time horizon with stochastic approximation 

gradient search algorithms, an approach that proves to be fast and effective. We compare this approach 

to retrospective optimization without gradient search on simple serial supply chains where the solution 

is known, and then use it for effective inventory positioning in more complex biopharmaceutical supply 

chains. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Firms often face the need to quickly and efficiently set supply 

chain operating parameters in complex, stochastic supply chains. 

It turns out that many of these problems share a specific struc- 

ture: given a sample path of realizations of the random variables in 

the problem over some finite horizon , optimal policy parameters for 

that specific sample path and that horizon can be found by solving a 

(potentially very large) mixed integer linear program (MILP). Given 

this insight, we have developed an efficient two-step heuristic ap- 

proach for finding effective operating parameters for these large 

stochastic problems, which we call ROGS, based on a hybrid of 

integer-programming-based Retrospective Optimization and Stochas- 

tic Gradient Search . Although these two techniques have separately 

(and in a few cases, together) been the focus of much research 

over the past decades, this is the first work, as far as we know, 

to combine these algorithms with simulation in a way that is flex- 

ible, relatively easy to implement in many settings, and applicable 

to the complicated and generally non-convex models characterized 

above. Indeed we have had success using our approach to quickly 

and effectively set supply chain policy parameters in a number of 

settings for biopharmaceutical firms that are members of the NSF- 

supported Center for Excellence in Logistics and Distribution. 
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Firms in the biopharmaceutical industry have supply chains 

that involve multiple stochastic elements including random de- 

mand, yields, fermentation times, filtration times, quality control 

times, etc. In addition, these supply chains are subject to disrup- 

tions due to natural disasters and human errors. There are typi- 

cally a large number of supply chain operating policy parameters 

to set in these supply chains, where, for instance, an order-up-to 

policy might dictate raising inventory to y at a specific site each 

period, or a periodic shipping policy might dictate shipping avail- 

able inventory from one site to another every x days. Setting policy 

parameters (such as the x or y in the examples above) in this sort 

of complex, stochastic environment typically requires complicated 

mathematical models with solution approaches that are very spe- 

cific to the exact structure of the model (particularly when a large 

number of system parameters need to be determined simultane- 

ously.) Much to our surprise, Retrospective Optimization via integer 

programming proved effective for solving these real-world prob- 

lems. 

Retrospective Optimization ( Healy and Schruben, 1991 ) is a 

type of sample path optimization ( Robinson, 1996 ) commonly used 

for finding solutions to stochastic optimization problems. This ap- 

proach is inspired by retrospective analysis, where managerial de- 

cisions are made through an exploration of what would have been 

the best decisions in the past based on subsequently realized data 

and performance ( Healy and Schruben, 1991 ). To apply retrospec- 

tive optimization, we simulate a potential future, and then deter- 

mine the retrospective solution for this projected future. Specif- 

ically, given distributions for a problem’s random variables, one 
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possible realization for all variables is generated, and the objective 

function is optimized given this now-deterministic sample path. In 

other words, we are solving the following problem: If we know 

the realization of future random variables, what is the most effec- 

tive policy? In “retrospective” terms, suppose that we are at some 

point in the future having seen the value that the random system 

parameters have taken on. Given this scenario, what would have 

been the best policy to implement? 

For the types of supply chain policy parameter problems we 

consider where it is reasonable to assume a linear cost function, 

given a sample path, parameters can typically be optimized us- 

ing a mixed-integer program, where integer variables are neces- 

sary to model the implementation of policies . Recall we are opti- 

mizing policy parameters, and not decisions, and consider the ex- 

ample of setting inventory policy in a simple inventory system. If 

future demand is known and our objective is to minimize inven- 

tory costs by determining shipment quantities in each period, ship- 

ments would equal future demand, and solving this class of mod- 

els would require solving linear programs in many cases. However, 

this approach would not give insight into how to actually manage 

the supply chain, because in reality, future demand is not known. 

However, if stationary policy parameters (such as base stock levels 

for example) are optimized, the resulting mathematical program is 

a MILP, and the resulting policy is implementable because it doesn’t 

directly depend on specific demand realizations. 

To illustrate this, consider the example of a simple single stage 

k -period finite horizon periodic review inventory model with de- 

terministic lead time and random demand. Assuming no loss sales 

(i.e. backorder is allowed with a penalty cost), such system can be 

stochastically optimized under a basestock policy. However, with a 

demand sample path, d t in period t = 1 , 2 , 3 , ..., k, this system op- 

erating under the basestock policy can also be modeled as a retro- 

spective MILP. 

We let π be the backorder cost and h be the unit holding cost. 

Let the variable s represent the basestock level, which we also as- 

sume to be the inventory level at the beginning of time. Let I t be 

inventory at time t, T t be demand met from inventory at time t, 

B t be backorder at time t , and s be the stationary base stock level. 

Given a vector of demand X̄ k = [ d 1 , d 2 , ..., d k ] , the optimal bases- 

tock level, s ∗, for that vector of demand can be found by solving 

the following integer program: 

P 1( ̄X k ) : 

min 

1 

k 

k ∑ 

t=1 

[ 
πB t + hI t 

] 
s.t. T t = min { s, d t + B t−1 } t = 1 , 2 , ..., k (1) 

B t = d t + B t−1 − T t t = 1 , 2 , ..., k (2) 

I t = s − T t t = 1 , 2 , ..., k (3) 

T 0 = 0 , B 0 = 0 , (4) 

T t ≥ 0 , B t ≥ 0 , I t ≥ 0 t = 1 , 2 , ..., k (5) 

recalling that the minimization constraint (1) can equivalently be 

formulated as a set of inequalities using a binary variable and a 

sufficiently large constant. (We detail this in Section 4.1.1 .) 

In the specific projects that motivated this work, our goal was 

to set stationary policy parameters in what is effectively an infi- 

nite horizon setting. We did this using retrospective optimization 

by solving the integer program resulting from generating a “suf- 

ficiently long” sample path. While we were able to generate ef- 

fective policies by solving these integer programs for very long 

time horizons (many years of daily decision-making), these inte- 

ger programs take a long time to solve (sometimes days), making 

sensitivity analysis challenging. To reduce solution times, we have 

had success combining this integer-programming-based retrospec- 

tive optimization approach with an approach based on Stochas- 

tic Gradient Estimation and Search. In our supply chain problems, 

parameter decision variables take on continuous values. Thus, we 

attempt to set these parameters by assigning initial values, esti- 

mating gradients, and searching in improving directions. This ap- 

proach can be used to obtain an approximation of a local optimum 

( Fu, 2006 ). However, the cost functions of supply chain problems 

such as the ones we are dealing with are in general not convex 

functions of policy parameter settings. Thus, we are motivated to 

utilize a two-stage approach for finding effective parameter set- 

tings: first, we solve a relatively computationally inexpensive retro- 

spective optimization integer program to find a “ballpark solution”

– a solution that we hope is sufficiently close to the optimal one 

that local search will prove effective. Then, we use this solution 

as the starting point for the gradient search. For the examples we 

have tried, this approach is be nearly as effective as solving the 

large, complex MILP’s described above, but takes orders of mag- 

nitude less time, thus allowing us to apply this approach to even 

more complex supply chains, and to more easily support “what-if”

analysis. 

While there are no doubt other settings where retrospective op- 

timization problems can be expressed as MILPs, and our approach 

may also work for those, we developed our approach of combining 

retrospective optimization MILP’s with Stochastic Gradient Search, 

which we call ROGS, in the context of supply chain problems, and 

in this paper we explore this approach. Specifically, we present 

a series of computational experiments developed to better under- 

stand the performance of ROGS, and to refine the details of its im- 

plementation. In the next section, we review relevant literature. In 

Section 3 , we present our two-step ROGS approach in more de- 

tail. In Section 4 , we present experiments designed to validate the 

performance and accuracy of ROGS under different operational pa- 

rameters. Finally, in Section 6 , we explore additional potential ap- 

plications and extensions of ROGS. 

2. Literature review 

There are a variety of relevant streams of literature in simula- 

tion optimization and supply chain inventory optimization. Below, 

we consider approaches for optimizing stochastic objective func- 

tions based on gradient estimation and search algorithms, as well 

as retrospective optimization. Because both our motivating prob- 

lems and computational testing focuses on supply chain inventory 

position, we also briefly explore the supply chain inventory posi- 

tioning literature. 

2.1. Stochastic gradient estimation 

In a typical constrained stochastic optimization problem, the 

objective is either directly or indirectly a function of both ran- 

dom variables and decision variables. We seek to optimize the de- 

cision variables, but must account for random problem parameters. 

Clearly, given a set of decision variables, we can obtain an estimate 

of the objective function value by sampling one or more instances 

of the random variables. 

A traditional approach for solving this type of problem involves 

estimating the gradient of the stochastic objective function, and 

searching in improving directions until the objective function value 

improves by less than a predetermined threshold. A simple way to 

estimate the gradient involves computing the differences in the ob- 

jective in each individual search direction. This approach is known 
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