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h i g h l i g h t s

• We compare different systemic risk formulations of the DebtRank (systemic risk) model
• We find determinants that explain divergences on the different models.
• The network cyclicality is an important determinant.
• The average vulnerability of banks in the network is another crucial determinant.
• We validate our claims on artificial and real-world financial networks.
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a b s t r a c t

We compare two widely employed models that estimate systemic risk: DebtRank and
Differential DebtRank. We show that not only network cyclicality but also the average
vulnerability of banks are essential concepts that contribute to widening the gap in the
systemic risk estimates of both approaches. We find that systemic risk estimates are
the same whenever the network has no cycles. However, in case the network presents
cyclicality, then we need to inspect the average vulnerability of banks to estimate the
underestimation gap. We find that the gap is small regardless of the cyclicality of the
network when its average vulnerability is large. In contrast, the observed gap follows a
quadratic behavior when the average vulnerability is small or intermediate. We show
results using an econometric exercise and draw guidelines both on artificial and real-world
financial networks.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The global crisis of 2007–2009 has highlighted important characteristics of financial markets that have not been properly
considered before by regulators. The implications of interconnectedness between economics agents on systemic risk is one
of these features that had little understanding during the crisis [1]. Prior to the crisis, the seminal work of Allen & Gale [2]
already highlighted the role of the network structure as a medium of shock amplification. However, only after the global
financial crisis policymakers and the academia recognized the importance of interconnectedness as a key component in
systemic risk.1
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1 For instance, Basel III now recognizes financial interconnectedness as a key issue when analyzing systemic risk buildup [3].
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Systemic risk materializes when many participants are simultaneously affected by severe losses, which can then
potentially disseminate throughout the system. Benoit et al. [4] highlight that the main sources of systemic risk are: (i) risk-
taking, which represents the possibility of correlated exposures to the same risk factor; (ii) financial contagion, in which
losses can propagate from one part of the system to others; and (iii) amplification, which captures the feasibility of small
shocks to develop into large impacts. Our work mainly deals with contagion and amplification that arise in a network of
interbank exposures.

Several works measure potential systemic risk of the financial system by analyzing contagion and amplification due to
the default of a single or group of banks [5–9]. In practice, however, studies reveal that the interbank channel becomes
relevant only when banks’ balance sheets are deteriorated or when we consider other contagion transmission channels,
such as those of fire sales and correlated portfolios [10–12]. In view of that, our work focuses on network measures that can
capture systemic risk buildup even in the case of the absence of defaults.

DebtRank is a financial-oriented centrality measure that is able to capture the banks’ distress levels even at mild
macroeconomic conditions or low levels of distress [13]. DebtRank is sensitive to small shocks because it considers that
financial assets deteriorate as a function of the net worth of the borrower. Then, as the borrower becomes financially
distressed, the corresponding creditors immediately recognize losses on the financial assets they have against that borrower.
Using this financial stress propagation rule, the DebtRank algorithm computes to what extend banks become distressed in
a financial network as a result of an external shock.

In this way, DebtRank is able to supply information on how far banks are from insolvency given an external shock
and therefore gives us a sense of a continuum between solvency and insolvency of financial institutions. In contrast, loss-
based measures are binary: either one bank can honor or not their liabilities in full. Considering that bank defaults are a
consequence of previous accumulated distress, the financial stress is a useful measure that regulators can employ to gauge
the solvency soundness of financial institutions.

The first version of theDebtRank–Battiston et al. [13]’s DebtRank–has a serious shortcoming in that it blocks second- and
high-order rounds of financial stress that may arise from cycles or multiple vulnerability routes in the network.2 Therefore,
it can largely underestimate systemic risk levels. Bardoscia et al. [14] deal with this problem by introducing a modified
version of the DebtRank that we term here as differential DebtRank, in which banks are allowed to recursively diffuse stress
increments and not their current stress levels at each iteration.3 Consequently, the procedure accounts for network cycles
and multiple vulnerability routes.

In the interval between the definition of the original and differential DebtRank formulations, DebtRank has been applied
in several financial networksworldwide [15,7]. Yet, no study has been performed to understand how different aspects of the
network topology have a role on systemic risk estimation using these two techniques. In this aspect, it is not clear in which
circumstances the original and differential DebtRank can provide divergent systemic risk estimates. In this work, we show
that the network cyclicality and the average vulnerability between banks are key determinants in explaining the divergence
of both approaches. Considering that macroprudential supervision and policy ideally need to rely on current systemic risk
levels to act, it is imperative to have accurate systemic risk estimates. Therefore, it becomes important to understand the
determinants that cause divergence on systemic risk estimates and therefore to have empirical subsidies to choose the right
technique at the given economic circumstances.

We first devise a novel artificial network generation process in which we can exogenously control for the network
cyclicality and the average vulnerability of banks. By analyzing how the systemic risk level gap between the original and the
differential DebtRank formulations varies as a function of those two components, we draw some guidelines as to when the
original DebtRank formulation can severely underestimate systemic risk levels. We show that, when there are no cycles nor
multiple vulnerability routes in the network, the gap is zero. Now, given that the network presents cyclicality, then we need
to be aware of the average vulnerability of banks. We find that the gap is small regardless of the cyclicality of the network
when the average vulnerability of the network is large. However, the gap width assumes a quadratic behavior when the
vulnerability is intermediate or small. For extreme values of the network cyclicality, that is very small or very large, the gap
is small. For intermediate values of the network cyclicality, the gap becomes large. The largest possible gap tends to happen
for network cyclicality values that are inversely proportional to the network vulnerability.

We verify that researches in the literature that estimate systemic risk employing the original DebtRank do not report
the network cyclicality nor the average vulnerability of banks. Our finding in this paper suggests that these results may
be compromised. On one side, apart from being sparse due to monitoring costs, we cannot infer much about cyclicality of
financial networks.4 On the other side, we can draw some conclusions about the average vulnerability of banks. Considering

2 In the Battiston et al. [13]’s DebtRank algorithm, when the financial institution A recognizes losses from a debtor counterparty due to mark-to-market
accounting, bank A’s net worth reduces and in turn it also propagates losses to its creditor counterparties. As soon as bank A transmits the first wave
of losses, it never again is able to propagate further stress in the network. Thus, in case bank A receives further stress from the same or other debtor
counterparty, it never transmits forward the second and subsequent waves of financial stress. As a result, Battiston et al. [13]’s DebtRank only considers
the first-round effects of financial contagion.
3 The allusion to differential DebtRank comes from the fact that the algorithm only allows stress increments (stress differentials) to propagate in the

network, as opposed to the original DebtRank formulation, in which we propagate stress levels.
4 Though sparsity possibly leads to fewer cycles, that is not a necessary condition. For instance, we can construct a ring and a star network using the

same number of links. The first topology is cycle-free, while the second is not.
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