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a b s t r a c t 

Support vector regression (SVR) is popular and efficient for regression problems. However, it is time- 

consuming to solve it, especially for large datasets. Inspired by the sparse solutions of SVR, a safe screen- 

ing based framework for SVR (SVR-SBF), including both linear and nonlinear cases, is proposed in this 

paper to improve its training speed. This SBF has two steps: First, the constant solutions of SVR along 

the regularization path of parameter C are deleted before training; Second, a safe screening rule via 

variational inequalities (SSR-VI) is embedded into the grid search method to further discard the inac- 

tive solutions of SVR. This SBF can efficiently accelerate the training speed of SVR without affecting its 

solutions. Compared to existing safe rules, our SVR-SBF can identify more inactive solutions by finding 

constant solutions beforehand. In addition, our SBF is further expanded to more situations and models. 

To be specific, a modified SSR-VI is proposed to be adapted to other parameter selection methods, and 

models including variants of SVR and classical SVM are analyzed. Experiments on both synthetic and real 

datasets are conducted to demonstrate the superiority of SVR-SBF. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Support vector regression (SVR) [1–3] is an efficient model for 

regression problems [4–6] . It has many attractive properties, in- 

cluding sparsity, robustness and excellent generalization ability. 

Therefore, a lot of improved methods [7–11] are developed based 

on it. So far, these models have been widely applied to various ar- 

eas, including pattern recognition [12,13] , bioinformatics [14] , im- 

age understanding [15,16] and document summarization [17] . 

In SVR, two terms are minimized in the objective function. 

The first term is training error, which is represented as the 

ε-insensitive loss function. Sparse solutions will be obtained due 

to this specific loss function. The second term is the regulariza- 

tion term, which controls the complexity of the model. Similar to 

the classical support vector machine (SVM), SVR enjoys solid the- 

oretical foundation and good statistical properties. However, it is 

expensive to solve SVR for the reason that it has 2 l constraints ( l is 

the number of training samples), which is two times of SVM. 

To accelerate the training process of SVR, a variety of techniques 

have been proposed. Here, we roughly divide them into two cate- 

gories: 

Sample selection methods. To reduce the scale of SVR it- 

self, many efficient sample selection methods have been proposed. 
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They select samples that are possible to be support vectors (SVs) 

with some priori information. For example, methods in references 

[18,19] search the potential SVs with k nearest neighbors. However, 

real SVs may be mistakenly deleted by these methods and the per- 

formance of SVR will be affected more or less. 

Fast solving algorithms. This kind of methods includes mod- 

ified Newton methods (MNM) [20] , geometric algorithms (GA) 

[21,22] , successive overrelaxation algorithms (SOR) [23] and so 

on. Among them, the dual coordinate descent method (DCDM) 

[24,25] is popular and efficient, especially for problems with sparse 

solutions. However, fast solving algorithms can not indeed reduce 

the scale of SVR. 

Recently, a kind of safe sample screening methods has been 

proposed for SVM [26–31] . They can enormously reduce the scale 

of SVM by finding and eliminating the real non-SVs before training. 

Most importantly, it can be proved that this kind of methods gives 

identical solutions with the original SVM. However, existing safe 

screening rules still have some shortcomings. To the best of our 

knowledge, existing safe rules are only embedded with the grid 

search (GS) [32] method. They have to repeatedly search the same 

non-SVs in SVM for all parameters, which is a waste of time. 

Inspired by the studies above, in this paper, we propose an ef- 

ficient safe screening based framework (SBF) for SVR (SVR-SBF) to 

accelerate its training speed. SVR-SBF has two steps. In the first 

step, the constant solutions are found and deleted before training 

according to the regularization path of parameter C [33] . Constant 

solutions represent the solutions whose values keep as a constant 
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when parameter C changes. In this way, the scale of SVR can be 

substantially reduced for all C . We call the simplified optimization 

problem SVR-1. In the second step, a safe screening rule via varia- 

tional inequalities (SSR-VI) is proposed for SVR-1 with each param- 

eter C i . To be specific, if the solution of SVR-1( C i −1 ) is known, the 

inactive components (inactive components mean the components 

with “0” and “1” values) in solution of SVR-1( C i ) will be safely 

identified. In this way, the scale of SVR-1( C i ) is further reduced. 

Applying SSR-VI sequentially with the GS method, the whole pa- 

rameter selection process will be accelerated. In summary, SVR-SBF 

achieves a two-layer acceleration and is more efficient than exist- 

ing safe rules. 

In addition, considering that besides the GS method, many 

other efficient parameter selection methods have been proposed 

[34–39] . Therefore, to extend the application scope of our SVR- 

SBF, a modified SSR-VI is further proposed to be adapted to other 

parameter selection methods, such as the genetic algorithm (GA) 

[37,38] the particle swarm optimization (PSO) [39] and so on. 

In general, the main innovations of this paper are as follows: 

- This is the first time to construct safe screening methods for 

SVR. Since the number of constraints in SVR is almost two 

times of SVM, it is more meaningful to develop safe sample 

screening methods for it. 

- SVR-SBF is more efficient than existing methods. Existing safe 

rules have to search the same inactive solutions iteratively. To 

avoid doing this, the first step of SVR-SBF identifies constant so- 

lutions beforehand. This technique saves a lot of searching and 

calculation time. 

- Most existing safe screening methods are applied to linear 

SVMs. In this paper, SBF is further extended to kernel SVR 

which needs much more training time. 

- SSR-VI is independent of parameter selection. To the best of our 

knowledge, existing safe rules are all done with grid-searching. 

In this paper, a modified SSR-VI is proposed to be adapted to 

other efficient parameter selection methods. This expands the 

application scope of our method. 

- SBF is independent of the solving algorithm. Therefore, any ef- 

ficient algorithms can be combined with it. 

Properties of SVR-SBF, including computational complexity and 

scalability, are further analyzed. Discussions on extending SBF 

to variants of SVR and classical SVM are also given to expand 

our method to other models. Experiments on synthetic and real 

datasets are conducted. The experimental results verify the effi- 

ciency and safety of SVR-SBF. 

This paper is structured as follows: Section 2 reviews the basic 

concepts and property of SVR. SVR-SBF is introduced in Section 3 . 

Properties of SVR-SBF are analyzed in Section 4 . Section 5 gives ex- 

periments on fifteen real-word datasets to assess the effectiveness 

and safety of SVR-SBF for both linear and nonlinear cases. Conclu- 

sions drown from this study are in the last section. 

2. Support vector regression 

In this section, the basics of SVR and related properties are in- 

troduced. 

2.1. The formulation of SVR 

Given training set T = { (x 1 , y 1 ) , (x 2 , y 2 ) , . . . , (x l , y l ) } where 

x i ∈ R d and y i ∈ R , the goal of SVR is to find the prediction function 

f (x ) = w 

T φ(x ) (the bias term is dropped by preprocessing the data 

with zero mean). The formulation of SVR can be expressed as 

min 

w,ξ (∗) 

1 

2 

|| w || 2 2 + Ce T (ξ + ξ ∗) (1) 

s.t. 〈 φ(x i ) , w 〉 − y i ≤ ε + ξi , 

y i − 〈 φ(x i ) , w 〉 ≤ ε + ξ ∗
i , 

ξi , ξ
∗
i ≥ 0 , i = 1 , 2 , . . . , l. 

In most cases, problem (1) can be solved easily in the following 

dual formulation. 

min 

ˆ α

C 

2 

ˆ αT H ̂  α + g T ˆ α (2) 

s.t. 0 ≤ ˆ α ≤ e. 

Here, H = 

[ 
K −K 

−K K 

] 
, K ∈ R l×l is the kernel function, K i j = 

K(x i , x j ) , i, j ∈ { 1 , 2 , . . . , l} , and g = 

[ 
εe − Y 
εe + Y 

] 
. ˆ α = 

1 
C 

[ 
α∗
α

] 
, where α∗

and α are Lagrange multipliers [40] . 

Many efficient algorithms have been proposed to solve problem 

(2) . In this paper, DCDM is chosen as the solving algorithm. 

2.2. The grid search method for SVR 

There are three parameters in problem (2) , i.e., C , ε and the ker- 

nel parameter p . In real applications, they need to be determined 

with efficient parameter selection methods. The GS method is a 

commonly used technique whose framework is given in the fol- 

lowing algorithm. 

From Algorithm 1 , we can see that SVR needs to be trained 

Algorithm 1 SVR-GS. 

Input: X train , Y train , X test , Y test ;C ∈ R m 1 , ε ∈ R m 2 , p ∈ R m 3 ; 

Output: Optimal parameters (C ∗, ε∗, p ∗) ; 
GS-SVR: 

s = 0 ; 

for k = 1 tom 3 do 

for i = 1 tom 2 do 

for j = 1 tom 1 do 

s ← s+1; 

ˆ α[ s ] ← SVR (C[ j] , ε[ i ] , p[ k ]) ; 

MSE[ s ] ← predict( ̂  α[ s ] , X test , Y test ); 

end for 

end for 

end for 

(C ∗, ε∗, p ∗) ← parameters corresponding to min (MSE) . 

with every combination of the parameters ( C , ε, p ) with the GS 

method. The whole process is time-consuming, especially for large 

scale problems. Our SVR-SBF is developed based on this SVR-GS. 

2.3. Basic property of SVR 

For SVR, the following proposition is its important basic prop- 

erty. 

Proposition 1. [41] Suppose that ˆ α = 

1 
C [ α

∗
1 
, α1 , . . . , α

∗
l 
, αl ] is the so- 

lution of problem (2) , and f (x ) = w 

T φ(x ) is the corresponding regres- 

sion function. Then 

(i) if ˆ αi = 1 , ˆ α∗
i 

= 0 or ˆ α∗
i 

= 1 , ˆ αi = 0 , then the corresponding point 

( x i , y i ) lies outside or on the boundary of the ε-tube of hyperplane 

f (x ) = w 

T φ(x ) ; 

(ii) if 0 < ˆ αi < 1 , ˆ α∗
i 

= 0 or 0 < ˆ α∗
i 

< 1 , ˆ αi = 0 , then the correspond- 

ing point ( x i , y i ) lies on the boundary of the ε-tube of hyperplane 

f (x ) = w 

T φ(x ) ; 

(iii) if ˆ αi = ˆ α∗
i 

= 0 , then the corresponding point ( x i , y i ) lies inside or 

on the boundary of the ε-tube of hyperplane f (x ) = w 

T φ(x ) . 

Proof of proposition 1 can be found in [41] . 
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