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a b s t r a c t

In the context of uncertainty analysis, Polynomial chaos expansion (PCE) has been proven to be a pow-
erful tool for developing meta-models in a wide range of applications, especially for sensitivity analysis.
But the computational cost of classic PCE grows exponentially with the size of the input variables. An effi-
cient approach to address this problem is to build a sparse PCE. In this paper, a full PCE meta-model is
first developed based on support vector regression (SVR) technique using an orthogonal polynomials
kernel function. Then an adaptive algorithm is proposed to select the significant basis functions from
the kernel function. The selection criterion is based on the variance contribution of each term to the
model output. In the adaptive algorithm, an elimination procedure is used to delete the non-
significant bases, and a selection procedure is used to select the important bases. Due to the structural
risk minimization principle employing by SVR model, the proposed method provides better generaliza-
tion ability compared to the common least square regression algorithm. The proposed method is exam-
ined by several examples and the global sensitivity analysis is performed. The results show that the
proposed method establishes accurate meta-model for global sensitivity analysis of complex models.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For decades, along with the rapid development of computer
science and technique, a variety of complex computational models
have been developed for simulating and predicting the behavior of
systems in nearly all fields of engineering and science. In the mean-
while, the uncertainty of model structures and inputs are increas-
ing rapidly. Uncertainty propagation through such complex models
may become intractable in cases when a single simulation is com-
putationally demanding. A remedy is to substitute a complex
model with a meta-model that possesses similar statistical proper-
ties, but has a simple functional form [1].

Non-intrusive polynomial chaos expansion (PCE) method is
popular for uncertainty propagation and global sensitivity analysis
(GSA) to determine the effect of input uncertainties on complex
computational models [2–5]. The key concept in PCE is to expand
the model response onto basis made of multivariate polynomials
that are orthogonal with respect to the joint distribution of the
input variables. In this setting, characterizing the response proba-
bility density function (PDF) is equivalent to evaluating the PC
coefficients, i.e. the coordinates of the random response in this
basis [6]. The coefficients of the expansion are evaluated in terms

of the response of the original model at a set of points in the input
space, called the experimental design [1]. Although PCE has been
proven to be powerful in a wide range of applications, they are
unsuitable for high dimensional problems. It is believed that the
number of the unknown expansion coefficients increases exponen-
tially with the dimension in high-dimensional approximation
[6–10]. To handle this issue, some sparse representations of the
PCE have been studied in [6,8–10], where only a small number of
significant basis functions are retained in the response PC
approximation. These methods have been proved to be able to
provide a significant computational gain compared to the classic
full PCE for uncertainty propagation and GSA.

Non-intrusive PCE offers a number of benefits compared to
other meta-model in uncertainty analysis [11].

� The full randomness of the response is contained within the set
of the expansion coefficients;

� The mean and variance of the response are available in closed-
form;

� PCE can be used with any second-order random process;
� PCE can handle many probability distribution types (normal,
gamma, beta, poisson, etc.);

� PCE is transparent, simple to implement and have a strong
mathematical basis;
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� PCE reaches fast convergence when the solutions are suffi-
ciently smooth in the random space.

Thus, PCE has been studied in a variety of fields, such as GSA
[2,9,10], structural dynamics [12], heat conduction [13] and fluid
dynamics problems [14].

This paper aims at building sparse PCE based on support vector
machine (SVM) for uncertainty propagation and GSA. SVM was
first developed by Vapnik [15,16] and colleagues at AT&T Bell lab-
oratories based on statistical-learning theory, it is a state-of-the-
art supervised learning algorithm which has been used in many
cases for regression (SVR) and classification (SVC) purposes
[17–20]. Compared to other meta-model, SVR is based on the
structural risk minimization principle [21], which leads to better
generalization capacity. In the proposed method, a full PCE meta-
model is first established. Then, similar as the idea of sparse PCE,
an adaptive algorithm is introduced to detect the important bases
and delete the non-significant basis functions. The adaptive
algorithm selects the significant basis functions based on the
variance contribution of each term to the model output. The major
strength of the proposed method is that it could detect a group of
basis functions simultaneously, thus it is efficient for high-
dimensional problems. In the meanwhile, the proposed method
provides better generalization ability due to the structural risk
minimization principle. For validation purpose, two benchmark
examples and two engineering applications are investigated for
GSA, and the results of the sensitivity analysis are compared to
those computed by sparse PCE in [9].

The rest of this paper is organized as follows: Section 2 reviews
the methodology of GSA. After which, SVR model is described in
detail in Section 3, including the theory foundation, kernel function
and the parameters selection techniques. Section 4 is the core of
this paper, the adaptive algorithm for building sparse PCE is pre-
sented and the corresponding GSA indices are derived based on
this meta-model. Section 5 compares the proposed method with
the sparse PCE for global GSA, and the conclusion comes in the end.

2. Global sensitivity analysis and Sobol’ decomposition

GSA plays an important role in exploring the respective effects
of input variables on an assigned output response. It can provide
complete information by accounting for variations of the input
variables in their entire domain, and then the priority level of the
input variables can be obtained in experiments or research. The
ranking of the input variables resulting from the GSA can help
designers to decide how to reduce the uncertain scope of response.
Amongst the wide range of literature on sensitivity analysis, the
Sobol’ indices have received more attention since they possess
lot of perfect properties [22–24]. In this section, the methodology
of the Sobol’ decomposition and the corresponding sensitivity
indices are reviewed.

Considering a square-integrable function defined in the unit
hypercube ½0;1�n, n input parameters are gathered in vector x,
and a scalar output y is expressed as following:

y ¼ gðxÞ ð1Þ
The Sobol’ decomposition of gðxÞ has a representation of the fol-

lowing form [22–24],

gðx1; . . . ; xnÞ ¼ g0 þ
Xn

i¼1

giðxiÞ þ
X

16i6j6n

gijðxi; xjÞ þ � � �

þ g1;2;...;nðx1; . . . xnÞ ð2Þ

where g0 is a constant and the integral of each summand
gi1 ;...is ðxi1 ; . . . xis Þ over any of its independent variables is zeros. gðxÞ

is orthogonally decomposed into summands of different dimen-
sions by the representation in Eq. (2), namely,

E½gir ;...is ðxir ; . . . xis Þ � giq ;...it ðxiq ; . . . xit Þ�
¼ 0 8ðir ; . . . isÞ – ðiq; . . . itÞ ð3Þ
When the square of Eq. (2) is integrated on ½0;1�n, the following

equation can be obtained.
Z

g2ðxÞdx ¼ g2
0 þ

Xn
i¼1

Z
g2
i ðxiÞdxi þ

X
16i6j6n

Z
g2
ijðxi; xjÞdxidxj

þ � � � þ
Z

g2
1;2;...;nðx1; . . . xnÞdx1; . . .dxn ð4Þ

It can be easily deduced that,

V ¼
Xn
i¼1

Vi þ
X

16i6j6n

Vij þ � � � þ V1;2;...;n ð5Þ

where V is the total variance of gðxÞ, Vi is the partial variance con-
tribution of xi, and Vi1 ;...;is is the cooperative variance contribution of
fxi1 ; . . . ; xisg which quantifies the interactions among fxi1 ; . . . ; xisg.

The Sobol’ indices are defined as follows:

Sl ¼ V l

V
¼ V ½EðyjxlÞ�

VðyÞ ð6Þ

where xl represents a single random input variable xi or a set of ran-
dom input variables fxi1 ; . . . ; xisg. Sl in Eq. (6) expresses the portion
of VðyÞ explained by xl. Practically, two variance-based sensitivity
indices are very popular,

Si ¼ Vi

V
¼ V ½EðyjxiÞ�

VðyÞ ð7Þ

Si is the main effect of xi, also called the first order Sobol’
indices, which only measures the marginal variance contribution
of xi to the variance of the output, and

STi ¼ VT
i

V
¼ V ½Eðyjx�iÞ�

VðyÞ ð8Þ

STi is the total effect of xi, where x�i indicates all the input vari-

ables except xi. Thus S
T
i measures the interaction contributions of xi

with all the other inputs.

3. Review on support vector regression

3.1. SVR network model

SVR is a powerful machine learning techniques developed by
the statistical learning theory. It uses the adaptive margin-based
loss functions and projects the learning data into a linear feature
space, and finds the best decision function in the feature space.
SVR is known for their good generalization performances and their
ability to handle nonlinear models using the kernels technique. The
optimization problem needing to be solved in SVR is convex, and
thus a unique and global optimal solution can be guaranteed.

Given a set of training samples fzi ¼ ðxi; yiÞ; i ¼ 1; . . . ;Ng, where
xi 2 Rn is the training data, N is the number of training samples,
and yi 2 R is the response for xi. By solving the Kuhn-Tucker condi-
tions of the following quadratic optimization problem

min 1
2 kxk2 þ C

XN
i¼1

ðni þ n�i Þ

s:t: yi �x �uðxiÞ � b 6 eþ ni; ni P 0
x �uðxiÞ þ b� yi 6 eþ n�i ; n�i P 0; 8i; i 2 ð1;2; . . . ;NÞ

ð9Þ
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