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In this paper, we aim a novel algorithm called robust L p -norm least squares support vector 

regression ( L p -LSSVR) that is more robust than the traditional least squares support vec- 

tor regression(LS-SVR). Using the absolute constraint and the L p -norm regularization term, 

our L p -LSSVR performs robust against outliers. Moreover, though the optimization problem 

is non-convex, the sparse solution of L p -norm and the lower bonds for nonzero compo- 

nents technique ensure useful features selected by L p -LSSVR, and it helps to find the local 

optimum of our L p -LSSVR. Experimental results show that although L p -LSSVR is more ro- 

bust than least squares support vector regression (LS-SVR), and much faster than L p -norm 

support vector regression ( L p -SVR) and SVR due to its equality constraint, it is slower than 

LS-SVR and L 1 -norm support vector regression ( L 1 -SVR), it is as effective as L p -SVR, L 1 -SVR, 

LS-SVR and SVR in both feature selection and regression. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Support vector regression (SVR) [1] , being one of the computationally powerful tools of support vector machines (SVMs) 

[2–4] , has been successfully applied to various practical problems, such as economy [5,6] , finance [7,8] , and industry [9,10] . 

However, using all features in these problems may decrease the regression regressiveness since some features are usually 

either redundant or even uninformative. Therefore, features should be compressed when there exist some redundant ones. 

Feature selection is a useful way to select some useful features upon which to focus its attention, while ignoring the rest 

[11,12] . In general, there are two ways to perform feature selection in regression, having been widely studied [13–19] . One 

way is that feature selection and regression procedure are realized separately [13,14] . That is to say, in the first stage, im- 

portant features are selected from the original features; based on these selected features, the regression procedure is then 

realized in the second stage. Another way is to conduct feature selection and regression simultaneously [15–18] , meaning 

that the solution obtained in the regression procedure has sparse property. 

For standard SVR, it may suffer from the presence of redundant features since it always utilizes all the features without 

discrimination [1–3] , leading to the overfitting problem [20–22] easily. In order to overcome this drawback, on the one 

hand, filter [13] or wrapper [14] feature selection method was adopted before the regression procedure. On the other hand, 
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following the spirit of L 1 -support vector machine ( L 1 -SVM) [23–26] , L 1 -norm support vector regression ( L 1 -SVR) was adopted 

to achieve better sparsity [19] . L 1 -SVR can realize feature selection and regression simultaneously due to its inherent feature 

selection property [16,27,28] . In order to obtain sparser solution, L p -support vector regression ( L p -SVR) (0 < p < 1) was 

studied [15,17,18] . The research results in [15] show that linear L p -SVR can not only do feature selection, but also improve 

the regression effectiveness. However, L p -SVR [15] has only its linear version, meaning that it is not appropriate when data 

set is structurally nonlinear. In addition, it has a slower training speed and could not deal with large scale data. 

To realize feature selection in regression more efficiently, we follow the spirit of least squares support vector machine 

(LSSVM) [29] and propose a novel algorithm called L p -least squares support vector regression ( L p -LSSVR) in this paper. Our 

L p -LSSVR uses an equality constraint instead of inequality ones in L p -SVR, cutting down the computational cost largely. 

Moreover, in order to improve the robustness of the conventional LSSVM using a sum squared error cost function [29] , 

here the ordinary error cost function with the absolute constraint is used in our L p -LSSVR. In addition, our linear L p -LSSVR 

can perform feature selection and improve the regression effectiveness simultaneously by adjusting parameter p . When the 

structure of selected features is nonlinear we can adopt our nonlinear L p -LSSVR to realize regression effectively. This implies 

that our L p -LSSVR conducts nonlinear regression with feature selection by two stages. Therefore, our L p -LSSVR has the ability 

to perform feature selection in both linear and nonlinear regression. To solve the non-convex L p -norm problem, We adopt 

a convergent successive linear algorithm (SLA) [30–33] , which could obtain an approximate local solution to our L p -LSSVR. 

Furthermore, lower bounds for the absolute value of nonzero components are used in every approximate local solution, 

ensuring that all useful features can be selected [34] . Experimental results on both artificial and real-world data sets show 

the superiorities of our L p -LSSVR. By using the absolute equality constraint, our L p -LSSVR is more robust to outliers than 

LS-SVR, and much faster than L p -SVR and SVR. In particular, compared results to those for L 1 -SVR, LS-SVR, and SVR, our 

L p -LSSVR not only selects fewer features but also has good regression effectiveness. 

This paper is organized as follows. Section 2 of this paper briefly dwells on the SVR and LS-SVR. Section 3 proposes our 

linear and nonlinear L p -LSSVR. Section 4 describes artificial and real-world data sets experiments and Section 5 concludes 

the paper. 

2. Background 

Starting with our notation, consider a regression problem in n -dimensional real vector space R n . For column vector x ∈ 

R n , [ x ] i denotes the i th component of x, i = 1 , 2 , . . . , n . | x | denotes the vector in R n of absolute values of the components of 

x . p -norm ‖ x ‖ p (0 < p < 1) is defined as (| [ x ] 1 | p + | [ x ] 2 | p + · · · + | [ x ] n | p ) 1 p . A training set is denoted by { A , Y }, where A is an 

l × n matrix, and the i th row A i ∈ R n represents the i th training sample, i = 1 , 2 , . . . , l. Y = (y 1 , y 2 , . . . , y l ) 
T in R l denotes the 

response vector. 

We next briefly review some algorithms that are closely related to our L p -LSSVR. For simplicity, it is only concerned with 

the linear version. The optimal linear regression function is constructed as follows: 

f (x ) = w 

T x + b, (1) 

where w ∈ R n and b ∈ R . 

2.1. Support vector regression 

In conventional SVR [1] , parameters in the linear regression function (1) are estimated by solving the following optimiza- 

tion problem: 

min 

w,b,ξ ,η

1 

2 

|| w || 2 + C(e T ξ + e T η) 

s.t. Y − (Aw + eb) ≤ εe + ξ , ξ ≥ 0 , 

(Aw + eb) − Y ≤ εe + η, η ≥ 0 , 

(2) 

where || · || 2 represents the L 2 -norm, C > 0 is a parameter determining the trade-off between the regularization term and 

empirical risk, ξ and η are slack variables, and e is a vector of ones of appropriate dimensions. Generally, conventional SVR 

may use all features without discrimination for training because SVR solution w lacks of sparseness. 

To overcome this drawback, [19] replaced the L 2 -norm penalty in (2) with L 1 -norm penalty [16,27,28] , and considered 

the L 1 -support vector regression ( L 1 -SVR): 

min 

w,b,ξ ,η
|| w || 1 + C(e T ξ + e T η) 

s.t. Y − (Aw + eb) ≤ εe + ξ , ξ ≥ 0 , 

(Aw + eb) − Y ≤ εe + η, η ≥ 0 , 

(3) 

where ‖·‖ 1 represents the L 1 -norm, C is a positive parameter, and ξ and η are slack vectors. By using the L 1 -norm, a 

small enough C will drive some coefficients of w i towards zero [16,27,28] . This implies that L 1 -SVR has an inherent feature 

selection property. 

To improve the sparseness, Zhang et al. [15] proposed L p -support vector regression ( L p -SVR) in the spirit of L p -support 

vector machine ( L p -SVM) [34–38] . The primal L p -SVR problem is formulated as follows: 
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