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a  b  s  t  r  a  c  t

This  paper  proposes  a novel  high  voltage  transmission  line  fault  location  scheme  based  on  application
of  support  vector  regression  (SVR).  The  proposed  scheme  just  uses  the  amplitudes  of  the  fault  voltage
waveforms,  measured  at a single  end of  the  line.  Various  types  of  faults  at different  locations  with  different
fault  impedances  and  a variety  of fault  inception  angles  are  studied  on  a 400  kV–300  km  high-voltage
transmission  line  power  system.  The  fault  voltages  are obtained  from  1/8  cycle  post-fault  signals  after
the  noise  has  been  eliminated  using  a low-pass  filter.  The  amplitudes  of  the  fault  voltage  signals  are
used  as  features  to  train  the  SVR.  After  training,  the  SVR  is  used  in  the  exact  location  of  the  fault  on
the  transmission  line.  When  compared  with  other  fault  location  schemes,  the  proposed  scheme  requires
less  information  and  a smaller  time  data  window  to  estimate  the  fault  locations.  However,  the  proposed
scheme  provides  more  accurate  estimations,  irrespective  of the  fault  types,  fault  inception  angles  and
fault  impedances.

© 2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Faults often occur in power transmission systems and can cause
supply interruptions, damage the equipment and affect the power
quality. Therefore, accurate fault location estimation is very impor-
tant for power transmission systems to allow faults to be cleared
rapidly and ensure that the power supply is restored as soon as
possible with minimum interruption. Accurate location of faults in
power transmission systems can save both time and resources in
the electrical utility industry.

To date, several algorithms or schemes have been proposed for
fault location estimation on power transmission lines, including
the line impedance algorithm [1], the traveling wave algorithm [2],
and intelligent schemes. The line impedance algorithm is affected
by the load conditions, high grounding resistance values, and most
notably by series capacitor banks [3]. The traveling wave algorithm
is based on calculation of the time taken for the line disturbance
to reach the end of the transmission line. However, the travel-
ling wave algorithm suffers from some bottlenecks [3], including a
high sampling rate requirement, uncertainty in the sampling win-
dow selection process and problems distinguishing between the
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traveling waves that are reflected from the fault and those that
are reflected from the remote end of the line. To overcome these
problems, many intelligent schemes have been proposed for fault
location estimation on power transmission lines. These intelligent
schemes are summarized in Table 1. Intelligent schemes gener-
ally contain two  steps. The first step involves obtaining features
from the fault voltage signals using feature extraction processes.
The second step involves training of intelligent algorithms using
these features and the subsequent estimation of the fault loca-
tion, called the regression process. To locate the fault, the various
schemes applied different types of signals and different signal data
windows, as shown in Table 1. Some of the schemes used a filter
prior to the feature extraction process to eliminate any noise from
the fault signals. Refs. [4–6] added low-pass filters prior to the fea-
ture extraction process, while the fault signals must pass through
a band pass filter before feature extraction in Ref. [7].

All the schemes listed in Table 1 used single-end measurements
to obtain the fault signals. Different feature extraction processes
were used to obtain the fault features and different intelligent
schemes were used to realize the fault location. Extraction of fault
features means that the fault location process takes extra time. To
save this time, a novel fault location scheme is proposed in this
paper that eliminates this feature extraction step. The proposed
scheme does not use any feature extraction process. Instead, we
use the amplitude information of the signals directly, and support
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Table 1
Summary of the schemes for fault location on power transmission line.

Year Reference Feature extraction processa Fault location processb Signals for fault location Data window of signals for location

2006 [8] HS-transform RBFNN CS and VS One cycle of pre-fault and one cycle of post-fault
2007  [9] DWT  SVM and RBFNN Current and voltage signals One cycle of pre-fault and one cycle of post-fault
2008  [10] DWT  BPNN Current and voltage signals Quarter cycle of post-fault
2008  [11] WPD  ANN Current and voltage signals Half cycle of pre-fault and half cycle of post-fault
2009  [12] WT ERN Current and voltage signals Half cycle of pre-fault and half cycle of post-fault
2009  [4] DWT  ANN Current and voltage signals One cycle of post-fault
2009  [13] FT ANFIS Current and voltage signals One cycle of post-fault
2010  [14] WPT  SVM Current signals Half cycle of pre-fault and half cycle of post-fault
2010  [15] WT SVM Current signals Half cycle of post-fault
2011  [16] DWT  PNN Current signals 1/4 cycle of post-fault
2011 [5] WPD  SVM Current and voltage signals Half cycle of post-fault
2012  [17] DFT KNN Voltage signals One cycle of post-fault
2012  [7] FT and WT CDNN Current and voltage signals one cycle of post-fault or one cycle of pre-fault
2014  [6] SWT  SVM Current and voltage signals 1/4 cycle of post-fault
2014 [18] WPD  KNN, GRNN, RF Voltage signals One cycle of post-fault
2014  [19] MPE  RBFNN Current signals Half cycle of pre-fault and half cycle of post-fault
2015  [20] WT ANN Current and voltage signals Half cycle of post-fault
2015  [21] MS-transform BPNN Voltage signals Half cycle of post-fault
2016  [22] WPT  CVA Current and voltage signals One cycle of post-fault
2016  [23] DWT  SVM Current signals One cycle of post-fault
2017  [24] FFT ANN Current and voltage signals Two cycle of post-fault

a HS-transform = hyperbolic S-transform, DWT  = discrete wavelet transform, WPD  = wavelet packet decomposition, WT = wavelet transform, FT = Fourier transform,
DFT  = discrete Fourier transform, SWT  = stationary wavelet transform, MPE = multi-wavelet packet entropy, MS-transform = multi-resolution S-transform, WPT  = wavelet
packet  transform, FFT = fast Fourier transform.

b RBFNN = radial basis function neural network, SVM = support vector machine, BPNN = back-propagation neural networks, ANN = artificial neural network, ERN = Elman
recurrent network, ANFIS = adaptive neuro fuzzy inference system, PNN = probabilistic neural network, KNN = K nearest neighbor, CDNN = complex domain neural networks,
GRNN  = generalized regression neural network, RF = random forests, SVD = singular value decomposition, CVA = common vector approach.

vector regression (SVR) is then used as the optimization method
for estimation of the fault point location. The signal amplitudes are
used as the features. The SVR is used to estimate the fault loca-
tion. One of the challenges in the proposed scheme is the trade-off
between accuracy and the required data window size. A larger data
window size will contain more information and result in more accu-
rate fault location. However, such a scheme would also require
more computation time. To balance the accuracy with the data
window size, the proposed scheme uses a 1/8 cycle data window.
The method is demonstrated on a power transmission system with
a 400 kV–300 km transmission line. Various fault types are initi-
ated at different locations along the transmission line using voltage
signals. The fault signal amplitudes are used as the fault features.
In addition, the output of the low-pass filter is applied to an SVR
for fault location estimation. While there are slightly more fault
features, the method can correctly and rapidly locate faults of dif-
ferent types with different fault inception angles and different fault
impedances because no feature extraction processes are used.

2. Support vector regression (SVR)

Support vector machines (SVMs) have some related supervised
learning methods that are used for classification and regression.
SVMs were introduced by Vapnik and Hearst et al. [25,26] within
the areas of statistical learning theory and structural risk minimiza-
tion. SVMs were first developed as support vector classification
(SVC) techniques to solve classification problems. SVMs can also
be applied to regression problems via the introduction of an alter-
native loss function, i.e., to perform SVR [27]. Because the structural
risk minimization principle of SVMs requires a discriminative func-
tion that has a minimal risk bound, the training sample size
required can also be smaller. Therefore, SVMs are less suscepti-
ble to over-fitting of data than other classification algorithms, such
as multilayer perceptron (MLP) neural network classifiers. SVMs
produce global solutions because SVMs are trained in the form of
a convex optimization problem. SVMs have been shown to offer
an attractive and more systematic approach to learning of linear

or nonlinear decision boundaries. SVR methods include both linear
SVR and nonlinear SVR. In this work, linear SVR is used.

Suppose that we  have a quantity of training data. xi denotes
the spaces of the input patterns, while yi denotes the spaces of
target values. The aim is to estimate a function f between the input
patterns and the target values. To realize nonlinear SVR, a nonlinear
mapping ϕ must be used to map  the data into a higher-dimensional
feature space where the linear SVR is performed. Consider a linear
function with the mapping ϕ that takes the form

f (x) = 〈ω, ϕ(x)〉 + b ω ∈ Rn, b ∈ R , (1)

where 〈·, ·〉 denotes the inner product in Rn, ω controls the
flatness of the model and ϕ(x) is a mapping function. The inner
product plus intercept 〈ω, ϕ(x)〉 + b is the prediction function for
training data in high dimensional feature space. Therefore, the opti-
mal  regression function is given by the minimum of the following
functional:
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where C is a pre-specified value, �i are loss functions, and �i and
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are slack variables. From (1) and (2), the SVR problem can be
restated as determination of an optimal solution to the following
quadratic programming problem [28]:
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(3)

To solve this quadratic programming problem, a Lagrange func-
tion is constructed based on both the objective function and the
corresponding constraints by introducing the dual set of variables
˛i, ˛∗

i
. After appropriate mathematical manipulations, the solution

is obtained as follows:
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