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a  b  s  t  r  a  c  t

In recent  years,  support  vector  regression  (SVR)  has  become  an  emerging  and  popular  forecasting  tech-
nique  in  the field  of  machine  learning.  However,  it is  subjected  to the model  selection  and  learning
complexity  O(K  *  N3),  especially  for a  massive  data  set (N is the  size  of training  dataset,  and  K  is the
number  of search).  How  to simultaneously  reduce  K and  N can  give  us insight  and  inspiration  on  design-
ing  an  effective  and  accurate  selection  algorithm.  To this  end,  this  paper  tries  to integrate  the  selection
of  training  subset  and  model  for SVR, and proposes  a nested  particle  swarm  optimization  (NPSO)  by
inheriting  the  model  selection  of the  existing  training  subset  based  SVR  (TS-SVR).  This  nested  algorithm
is  achieved  by  adaptively  and  periodically  estimating  the search  region  of the  optimal  parameter  set-
ting  for  TS-SVR.  Complex  SVR,  involving  large-scale  training  data,  can be seen  as  extensions  of  TS-SVRs,
yielding  a nested  sequence  of  TS-SVRs  with  increasing  sample  size.  The  uniform  design  idea  is  trans-
planted  to  the above  modeling  process,  and  the  convergence  for the  proposed  model  is proofed.  By  using
two  artificial  regression  problems,  Boston  housing  and  electric  load  in  New  South  Wales  as empirical
data,  the  proposed  approach  is  compared  with  the  standard  ones,  the  APSO-OTS-SVR,  and  other  existing
approaches.  Empirical  results  show  that  the  proposed  approach  not  only  can  select  proper  training  subset
and parameter,  but also  has  better  generalization  performance  and  fewer  processing  time.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Support vector regression (SVR) is a very promising and popular
forecasting model rooted in statistical learning theory [1], whose
achievements are due to the linear or nonlinear kernel technique
[2–4]. It is well-known that the generalization performance of SVR
depends on the good choice of parameter setting [5,6]. For this
purpose, the problem of SVR’s parameter selection becomes a fun-
damental yet crucial task. It will be desirable to design an effective
and accurate selection algorithm to make SVRs practical for the
wide variety of practitioners in engineering applications of regres-
sion and modelling [7,4].

The parameter selection of SVR is known as the model selection
problem, and can be formulated as an optimization problem of a
function which is multimodal and only vaguely specified. A simple
method to handle the model selection is to perform an exhaustive

∗ Corresponding author.
E-mail addresses: ylyang@mail.xidian.edu.cn, youlongyang2015@163.com

(Y. Yang).

grid search over the parameter domain. Generally, the exhaustive
grid search has high computational cost especially in large-scale
training data set (the size of training dataset N is a large number):
Firstly, the candidate size of the SVR parameter domain is large,
so fine grid search is quite inefficient due to a large number of
parameter combinations, becoming impracticable if the dimension
of the parameter domain is large, even if the grid is not too fine
[15]. Secondly, the computation complexity of the above problem
is O(K * N3) (N is the size of training dataset, and K is the number of
search). To this end, the population based search algorithm, such
as particle swarm optimization (PSO), is a good alternative for find-
ing better tuning parameters [8,9]. Nevertheless, if the number of
search K and the size of training dataset N are all considered, the
complexity of the problem will still be significant for large-scale
training data set. Based on the above rationality, how to simul-
taneously reduce K and N can give us insight and inspiration on
designing an effective and accurate selection algorithm.

On the one hand, many researchers have studied how to reduce
the number of trials in parameter combinations, i.e. K. By estimat-
ing some parameter-dependent error, four types of the gradient of
parameter selection criterion are calculated to optimize the model
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Nomenclature

K the kernel function of SVR
ı or � the width parameter of kernel function
f the regression function of SVR
ω, b the weight vector and the bias of regression function
ε the maximum value of tolerable error
�i, �∗

i
the distance between actual values and the corre-
sponding boundary values of ε-tube

C the trade-off parameter between generalization
ability and training error

d the dimension of data set
TS(m)  a selected training subset with size m
Fm(x), F(x) the cumulative distribution function and empiri-

cal cumulative distribution function
xi(h) the position of particle i at the moment h
vi(h) the velocity of particle i at the moment h
pi, pg the itself and the entire swarm best position
c1, c2 the weight factors
Pbest[TS(m)]  the best particle of SVR for training subset TS(m)
nk the number of particles at the kth iteration
ek the minimum error at the kth iteration
MaxNk the maximum iteration number at the kth iteration

selection problem [10–13]. Although these algorithms can effec-
tively reduce the K and show impressive gain in time complexity,
it is likely that they get trapped in bad local minima. To avoid com-
puting the derivatives of model selection criterion, Momma  and
Bennett introduce a pattern search algorithm which is suitable for
optimizing SVR problems for which it is impossible or hard to obtain
information about the derivatives [14]. Li et al. propose a multi-
objective uniform design (MOUD) search algorithm to make the
search scheme better uniformity and space-filling. This selection
algorithm can dramatically reduce the K, avoid wasteful function
evaluations of close-by patterns, then provide the flexibility to
adjust the candidate set size under computational time constraint
[15]. By combining the uniform design and stochastic optimization
method, Jiménez et al. propose a random version of focused grid
search [16], where more concentrated set in the parameter search
space is repeatedly randomly screened and examined by using
heuristic search. By updating the local and global best known pos-
itions, PSO can be expected to iteratively move the swarm toward
the optimal solution, and perform a more effective search by com-
bining the uniform design idea [17–20].

On the other hand, support vector regression (SVR) has high
computation complexity O(N3) for large sample. Training data
reduction is an effective method to reduce the N due to the sparse-
ness of SVR. Based on it, researchers have proposed many effective
solutions. One type of solution is to decompose the large dataset
problem into several small sub-problems. By using the low-rank
approximation method of dealing with the full kernel matrix, a
reduced SVR (RSVR) is presented [21]. To further improve the
computational efficiency, the other type of solution is to select a
small-scale training subset for the original dataset. Lee et al. obtain a
small-scale training subset by using the random sampling method,
then train the SVR based on the training subset [22]. Brabanter et al.
propose a modified active subset selection method by constructing
a maximum objective function of quadratic Renyi entropy, and opti-
mize the random training subsets using an iterative method, then
determine an optimized fixed-size kernel models for large data sets
[23]. The above SVRs for large scale of data are limited to the fixed-
size training subset, Che constructs an approximation convexity
optimization framework to determine the optimal size of training
subset based SVR (TS-SVR), and solves it by a 0.618 method [24].

The work of literature [24] that hybridizes APSO and TS-SVR uses
APSO for each model selection process of TS-SVRs. In particular, it is
a two-step approach where the first stage is based on optimal train-
ing subset (OTS) algorithm to select a training subset considered in
the second stage. For the TS-SVR with this training subset, an APSO
algorithm is then employed to perform the model selection of the
TS-SVR in the second stage. However, its model selection process
is repeatedly performed for each iteration of training subset. This
method does not consider the interconnection between training
subset selection and model selection, which gives us the following
motivation to achieve better performance: An integrated strategy
between training subset and model selection is expected to make
the selection process far more space-filling by cutting the wasteful
parameter space of close-by patterns. As far as we  know, no study
truly integrates the training subset and model selection within a
SVR modeling process.

To progressively exploit a wide candidate search region stage
by stage, this paper tries to integrate the selection of training sub-
set and model for SVR, and proposes a nested PSO by inheriting
the model selection of the existing training subset based SVR. This
modified SVR can simultaneously reduce both K and N by using the
above integrated strategy, which is a fast SVR model suitable for
large-scale training data. We firstly analyze and apply the train-
ing subset based SVR (TS-SVR) iteration process in literature [24]
for exploring the parameter domain. Then, the movement region
of the optimal parameter setting between two  TSs with different
sizes is estimated, which forms a nested mechanism and contracted
search to dramatically reduce the candidate set space of parameter
combinations. Finally, we connect the TS-SVRs from small to opti-
mal  size by a nested particle swarm optimization (NPSO) in order
to search the tuning parameters periodically. Experimental results
show that the proposed integrated SVR can select proper training
subset and parameter with which the testing accuracy of trained
SVRs is competitive to the standard ones, and the training time
can be significantly shortened. The updated search regions can be
adjusted adaptively and dynamically with the iteration process of
TSs.

The rest of the study is organized as follows. Section 2 gives a
brief introduction of the basic model. Section 3 presents the inte-
grated training subset and model selection for SVR (I-TSMS-SVR).
The convergence for the I-TSMS-SVR model is proofed in Section 4.
Section 5 presents the numerical results. The final conclusion is
drawn in Section 6.

2. The basic model

2.1. Support vector regression

In this subsection, a very brief description of ε-insensitive sup-
port vector regression (ε-SVR) is given, and a more thorough
coverage is introduced in [1,25–27]. Specifically, the training data
(xi, yi) of n records are given, where (xi, yi) ∈ R

d × R. The SVR pre-
dictor will forecast record with input pattern x ∈ R

d by using a
regression function of the form

f (x) =
n∑

i=1

(
˛∗

i − ˛i

)
K(xi, x) + b (1)

where K : R
d × R

d �→ R  is the SVR kernel function that maps the
input space into a higher-dimensional feature space, and this “ker-
nel trick” makes the nonlinear regression on the input space be
equivalent to the linear regression on the higher-dimensional fea-
ture space. Conventionally, the coefficients ˛∗

i
, ˛i are found by
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