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h i g h l i g h t s

� A multiscale least squares support vector regression is built to predict carbon price.
� Carbon price is decomposed into several simple modes via empirical mode decomposition.
� Evolutionary least squares support vector regression is used to forecast each mode.
� The proposed approach can achieve high statistical and trading performances.
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a b s t r a c t

Conventional methods are less robust in terms of accurately forecasting non-stationary and nonlineary
carbon prices. In this study, we propose an empirical mode decomposition-based evolutionary least
squares support vector regression multiscale ensemble forecasting model for carbon price forecasting.
Firstly, each carbon price is disassembled into several simple modes with high stability and high regular-
ity via empirical mode decomposition. Secondly, particle swarm optimization-based evolutionary least
squares support vector regression is used to forecast each mode. Thirdly, the forecasted values of all
the modes are composed into the ones of the original carbon price. Finally, using four different-
matured carbon futures prices under the European Union Emissions Trading Scheme as samples, the
empirical results show that the proposed model is more robust than the other popular forecasting meth-
ods in terms of statistical measures and trading performances.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Global climate change, as a grand challenge faced by the human
society, is attracting more and more attention around the world in
the recent few decades. To address this challenge, the Kyoto Proto-
col, signed in 1997, came into effect on February 16, 2005. The pro-
tocol established the quantitative greenhouse gas emission
reduction targets for the developed and industrialized countries.

To achieve these targets effectively, the European Union Emissions
Trading System (EU ETS) was initiated in January 2005. The EU ETS
has been the biggest carbon trading market so far. It also provides
an important demonstration of carbon market construction for
other countries or regions, as well as a new investment choice
for investors [1]. In light of this, it is important to improve the
accuracy of carbon price forecasting. On the one hand, accurately
forecasting carbon prices can contribute to a deep understanding
on the characteristics of carbon prices so as to establish an effective
and stable carbon pricing mechanism. On the other hand, it can
provide a practical guidance for production operations and invest-
ment decisions, helping to avoid carbon price risks and maximize
carbon assets. Therefore, carbon price prediction has become one
of the most popular topics in energy research.

As we know, prediction technology generally can be classified
into two categories: (i) time series forecasting, and (ii) multi-
factor forecasting. Although multi-factor forecasting can consider
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the influences of exogenous variables, it is used to forecast the car-
bon price in the premise of forecasting the exogenous variables,
which will inevitably lead to the problem of error accumulation
so as to make the failure of carbon price prediction. Time series
prediction can predict the future trend of carbon price by establish-
ing a mathematical model to extend the trend of its own historical
changeable law without the influences of exogenous variables,
which can obtain a high prediction accuracy. Many studies have
proven that time series prediction is applicable for energy and car-
bon prices forecasting. Thereby, multi-factor forecasting is
excluded, and time series forecasting is utilized to predict carbon
price in this study. Recently, carbon price forecasting has attracted
more and more research attentions [2–11]. The time series fore-
casting approaches used so far can be roughly divided into two
broad categories: statistical and econometric models, and artificial
intelligence (AI) models. The former includes the multiple linear
regression [2], GARCH [3], MS-AR-GARCH [4], FIAPGARCH [5],
HAR-RV [6], and nonparametric models [7]. The latter includes
artificial neural networks (ANNs) [8,9] and least squares support
vector regression (LSSVR) [10,11]. Although the existing methods
can obtain good results when they are applied for stationary time
series forecasting, they are not robust for forecasting accurately
carbon price due to its highly non-stationary and nonlinear charac-
teristics [12].

Empirical mode decomposition (EMD), proposed by Huang and
his co-authors in 1998, is an effective approach for handling the
nonlinear and non-stationary time series [13–15]. EMD can disas-
semble any carbon price into several intrinsic mode functions
(IMFs) plus a residue with high stability and high regularity. When
the IMFs and residue are used as the inputs of ANN or LSSVR, it can
improve learning efficiency and forecasting accuracy by providing
better understanding and feature-capturing [11,16]. Thereby, the
accuracy of carbon price forecasting can be enhanced through
EMD. During the past few years, the EMD-based ANN and/or LSSVR
models have been applied for time series forecasting [17–26],
including carbon price forecasting [11,16]. However, the tradi-
tional back-propagation ANNs, used as the predictors, can lead to
the overfitting problems. Although LSSVR, built on the structural
risk minimization, can effectively solve the overfitting problem
[27], the performance of a LSSVR predictor is sensitive to its own
model selection. Yet the hybrid EMD and LSSVR models have rarely
been employed for carbon price forecasting. Thus, this study seeks
to address this gap in carbon price forecasting methodology.

The aim of this study is to develop an EMD-based evolutionary
LSSVR model to forecast carbon prices with high accuracy. The
contributions of the study are twofold. On the one hand, an
EMD-based evolutionary LSSVR model (EMD–LSSVR–ADD) is con-
structed to forecast carbon prices: (1) each carbon price is decom-
posed into several IMFs plus a residue with high stability and high
regularity via EMD; (2) all the IMFs and residues are respectively
predicted via LSSVR trained by particle swarm optimization
(PSO); (3) the forecasted values of all the IMFs and residues are
aggregated into the ones of the original carbon price. On the other
hand, using the empirical data from four different-matured carbon
futures under the EU ETS, the study compares the forecasted
results of the proposed model with the single ARIMA and LSSVR
models, the hybrid ARIMA + LSSVR model, and a variation of the
forecasting model (EMD-ARIMA-ADD) to demonstrate its robust-
ness. Guo et al. [28] argued that it may be more suitable to inte-
grate all IMFs without IMF1 when forecasting wind speed. Thus
the study adds two models by removing the IMF1 from EMD–
ARIMA–ADD and EMD–LSSVR–ADD to test whether this approach
is feasible in the prediction of carbon prices, denoted as EMD–
ARIMA–IMF1–ADD and EMD–LSSVM–IMF1–ADD models respec-
tively. The study adopts the well-established evaluation criteria,
including level forecasting, directional prediction, the Diebold–

Mariano (DM) test, the Rate test, and trading performances includ-
ing the Annualized return, Annualized volatility and Information
ratio, to assess the robustness of the proposed EMD–LSSVR–ADD
model.

The paper is organized as follows. Section 2 describes the EMD,
LSSVR, and the proposed models. Section 3 reports the empirical
analysis, and Section 4 concludes the study.

2. Methodology

2.1. EMD

EMD can decompose a carbon price into several IMFs and one
residue by its local feature scales, as follows:

Step 1: Find out the local extreme points of carbon price xðtÞ;
Step 2: Shape the upper and lower envelopes, emaxðtÞ and eminðtÞ,
respectively;
Step 3: Obtain the mean of emaxðtÞ and eminðtÞ:

aðtÞ ¼ ½emaxðtÞ þ eminðtÞ�=2
Step 4: Get the difference between xðtÞ and aðtÞ:

dðtÞ ¼ xðtÞ � aðtÞ
Step 5: Check dðtÞ. When dðtÞ cannot meet the two conditions of
IMF, let xðtÞ ¼ dðtÞ, return to the step 1, and cannot repeat
unless dðtÞ meets the two conditions. Otherwise, dðtÞ is defined
as an IMF, and let the residue rðtÞ ¼ xðtÞ � dðtÞ;
Step 6: Perform the steps 1–5 only when the termination crite-
rion is met. In this study, we use the termination criterion pro-
posed by Rilling et al. [29], in which a ¼ 0:05, h1 ¼ 0:05, and
h2 ¼ 0:5.

Finally, we can obtain:

xðtÞ ¼
Xm
i¼1

IMFiðtÞ þ RmðtÞ

where m is the number of IMFs, and RmðtÞ is the final residue.

2.2. LSSVR

For data fxi; yig; i ¼ 1; 2; . . . ; n, LSSVR is defined as [27]:

min
1
2
kxk2 þ 1

2
C
Xn
i¼1

n2i

( )

s:t: yi ¼ x �uðxiÞ þ bþ ei; i ¼ 1;2; . . . ;n

in which x: the weight vector, C: the penalty parameter, ni: the
error, u: mapping function, and b:the bias.

The Lagrange function is used to find out the solutions forx and
ni:

Lðx; b; n;aÞ ¼ 1
2
kxk2 þ 1

2
C
Xn
i¼1

n2i �
Xn
i¼1

aifx �uðxiÞ þ bþ ni � yig

in which fai; i ¼ 1; 2; . . . ; ng are a set of Lagrange multipliers. The
optimal solutions are obtained from:

@L
@x ¼ 0 ! x ¼

Xn
i¼1

aiuðxiÞ

@L
@b ¼ 0 !

Xn
i¼1

ai ¼ 0

@L
@ei

¼ 0 ! ai ¼ Cei
@L
@ai

¼ 0 ! x �uðxiÞ þ bþ ei � yi ¼ 0
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