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A B S T R A C T

Snow cover is an informative indicator of climate change because it can affect local and regional surface energy
and water balance, hydrological processes and climate, and ecosystem function. Passive microwave (PM) remote
sensing data have long been used to retrieve snow depth and snow water equivalent with large uncertainties. The
objective of this study is to develop snow-depth retrieval algorithm based on support vector regression (SVR)
technique using PM remote sensing data and other auxiliary data. Ground-based daily snow depth data from
1223 stations across Eurasian continent were used to construct and validate the snow-depth retrieval algorithm.
This SVR snow-depth retrieval algorithm partitioned three snow cover stages, and four land cover types then
generated twelve snow-depth models for each phases. A non-linear regression method based on support vector
regression (SVR) was used to retrieve snow depth with PM brightness temperatures, location (latitude and
longitude), and terrain parameters (elevation) as input data and land cover as auxiliary data. In addition, we
compared the performance of the SVR snow-depth retrieval algorithm with four alternative algorithms: the
Chang algorithm, the Spectral Polarization Difference (SPD) algorithm, the Artificial/Neural Networks (ANN)
and, an algorithm based on linear regression. Comparing results obtained from these five snow-depth retrieval
algorithms against the ground-based daily snow depth data, the SVR snow-depth retrieval algorithm performs
much superior with reduced uncertainties. We report the results aimed at evaluating the impact of the variation
of snow cover stages and land cover types. The preliminary results suggest that the SVR snow-depth algorithm
could detect deep snow with high accuracy and decrease the impact of saturation effects. These results suggest
that the SVR snow-depth retrieval algorithm integrating PM remote sensing data and other auxiliary data (land
cover types, location, terrain, snow cover stage with indirectly considering grain size variation) can be a more
efficient and effective algorithm for retrieving snow depth and snow water equivalent over various scales.

1. Introduction

Snowmelt is an important water source for rivers and lakes.
Seasonal snow and glaciers store large amounts of freshwater and are
critical for water cycles, hydrology, climatology and water management
(Armstrong and Brodzik, 2002; Immerzeel et al., 2010; Robinson and
Frei, 2000; Tedesco et al., 2014; Tedesco and Narvekar, 2010; Wang
et al., 2015). Snow cover has important implications for energy ex-
change processes between the land and atmosphere because of its high
surface albedo and consequent thermodynamic processes in winter
(Cohen and Entekhabi, 2001; G.Barry and Gan, 2011; Gong et al., 2007;
Hall et al., 2014). In addition, snow cover has a significant influence on
soil thermal regime (Goodrich, 1982; Zhang, 2005; Zhang et al., 1996),
winter soil CO2 efflux, soil carbon and soil nitrogen mineralization,

tundra vegetation composition and canopy structure (Schimel et al.,
2004; Sturm et al., 2005; Tape et al., 2006; Welker et al., 2000). Both in
situ and satellite observational records show that the Northern Hemi-
sphere snow cover extent has significantly reduced in the past 90 years
(IPCC AR5, 2013).

Due to the heterogeneity of snow properties in spatiotemporal dis-
tribution, conventional snow measurements lack the ability to capture
the spatial and temporal variability snow characteristic. Satellite ob-
servations provide an effective approach to monitor snow cover with
continuous observations and global coverage. Passive Microwave (PM)
remote sensing has become an efficient method to estimate snow depth
and snow water equivalent, as it provides more information of spatio-
temporal snowpack variation. Snow physical properties, including snow
depth, snow water equivalent, liquid-water content, grain size, density
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and stratification among others, exhibit substantial temporal and spa-
tial variability (Hall, 1987; Rosenfeld and Grody, 2000). Microwave
remote sensing observation is based on the thesis that snow-emitted
microwave radiation has a strong dependence on snow physical prop-
erties, besides snow depth, mainly on snow density, grain size, and
stratification (Rosenfeld and Grody, 2000). PM brightness temperature
data reflects snowpack scattering information in terms of the combined
effect of snow density, liquid water content, snow metamorphism, and
grain size, which also affect the dielectric properties of snowpack.
Changes in snow property directly affect microwave brightness tem-
perature. Snow depth is positively related to volumetric scattering of
microwave radiation and negatively related to measured brightness
temperature from satellite microwave sensors (Gan et al., 2013).
Moreover, Zhong et al. (2014) found that snow density is positively
related to latitude and negatively related to elevation based on ground-
based daily snow depth data. Studies also demonstrated that topo-
graphic factors play a critical role in snow distribution and snow phy-
sical properties (Bi et al., 2015; Gharaei-Manesh et al., 2016; Li et al.,
2015; Savoie et al., 2009; Smith and Bookhagen, 2016). Snow cover
products obtained from PM remote sensing data have been widely ap-
plied to investigate regional and global climate change, and validate
hydrological and climate models (Brown and Robinson, 2011; Brown
and Mote, 2009; MacKay et al., 2003). In contrast with visible and
thermal infrared bands, PM radiation can probe through clouds and
interact with snowpack providing dual polarization data at different
frequencies (Chang et al., 1987; Che et al., 2008; Liang et al., 2015;
Tait, 1998; Tedesco et al., 2004).

To quantify and model the snowpack, it is necessary to account for
spatial differences in snow cover over different land cover types.
Because vegetation overlaying snow attenuates its microwave scatter
signal, underlying land cover adds to the complications of estimating
snow depth and snow water equivalent from PM data (Che et al., 2016;
Foster et al., 1999; Yu et al., 2012). Vander Jagt et al. (2013) pointed
out that microwave signal sensitivity to snow depth was reduced by
23–63% due to the presence of vegetation in some places. To reduce the
effect of forest cover, the forest fraction was included to derive snow
depth and snow water equivalent (Che et al., 2008; Foster et al., 1997).
Additionally, attenuation of passive radiation between snow depth or
snow water equivalent and different land cover types are both pro-
nounced and different. Goïta et al. (2003) developed different algo-
rithm according to different land cover types. Romanov and Tarpley
(2007) improved the snow depth retrieval algorithm and accounted for
tree cover fraction and the tree types (deciduous or coniferous).

There have been several algorithms developed to estimate snow
depth and snow water equivalent using PM brightness temperature data
(Aschbacher, 1989; Chang et al., 1987; Che, 2006; Che et al., 2008;
Grippa et al., 2004; Kelly, 2009; Kelly et al., 2003; Rott and Aschbacher,
1989; Takala et al., 2011; Tedesco et al., 2004). Typically, most snow-
depth retrieval algorithms were developed using the difference between
horizontal polarized brightness temperatures of 19 (or 18) GHz and
37 GHz. However, recent studies have shown that snow-depth retrieval
algorithms using brightness temperatures from other channels, such as
~10 GHz (Derksen, 2008) and 85 GHz (Kelly, 2009), may better resolve
shallow snow cover and be less sensitive to saturation of microwave
signal at 19 GHz (Kelly, 2009; Smith and Bookhagen, 2016; Tedesco
and Narvekar, 2010). PM brightness temperatures are available on
Advanced Microwave Scanning Radiometer for Earth Observing System
(AMSR-E), the Advanced Microwave Scanning Radiometer 2 on the
Global Change Observation Mission – Water (GCOM-W AMSR2), the
Special Sensor Microwave Imager (SSM/I) and the Special Sensor Mi-
crowave Imager Sounder (SSMIS). Most snow-depth retrieval algo-
rithms were employed based on the notion that PM brightness tem-
perature differences between 18 and 37 GHz may reflect snow depth
and snow water equivalent (Chang et al., 1987). These retrieval algo-
rithms tend to underestimate snow depth and snow water equivalent
(Basak et al., 2007; Gan et al., 2013). Meanwhile, new modeling

approaches (e.g. artificial neural networks, support vector regression,
decision tree) are emerging (Gharaei-Manesh et al., 2016). These new
approaches are intended to replace traditional linear methods and to
explore, using data-mining, non-linear functional relationships between
input (brightness temperatures) and output (snow depth) variables.
Knowledge of snowpack physical processes is not necessary for these
modeling approaches. Tedesco et al. (2004) applied ANN to estimate
snow water equivalent and snow depth. Liang et al. (2015) in their
study used a Support Vector Machine (SVM) integrating PM brightness
temperature and visible reflectance to retrieve snow depth and snow
water equivalent. However, there are still limitations for those methods
due to the complexity of topography, heterogeneous land cover types
which attenuate microwave scatter signal.

The primary goal of this study is to develop a support vector re-
gression (SVR) snow-depth retrieval algorithm using PM remote sensing
data and related auxiliary datasets. The developed SVR snow-depth
retrieval algorithm accounts for three snow cover stages and four land
cover types (forest, shrub, prairie and bare-land). In Section 2, we in-
troduce data for the SVR snow-depth retrieval algorithm over the
Eurasian continent. In Section 3, we describe the process of snow depth
retrieval and methods used at each step. Following this approach, we
use the SVR snow-depth retrieval algorithm to estimate snow depth
across Eurasian continent and evaluate the algorithm performance
against the in situ measured daily snow depth data. We also run five
other existing snow-depth retrieval algorithms against the same in situ
measured daily snow depth data for algorithm comparison.

2. Data

Snow accumulation (snow depth) is heterogeneous and some sec-
ondary forces (such as wind, avalanche, land cover etc.) may redis-
tribute snow and change snow condition. Previous studies have shown
that snow depth has a close relationship with PM brightness tempera-
ture in different channels, and brightness temperature difference in-
creases with snow depth (Aschbacher, 1989; Chang et al., 1987; Che,
2006; Che et al., 2008). Moreover, previous studies have demonstrated
that many factors or parameters influence snow physical properties and
the distribution of snow cover including, but not limited to, vegetation
(Che et al., 2016; Derksen et al., 2005; Foster et al., 1997), near-surface
soil temperature and air temperature (Grippa et al., 2004; Josberger
and Mognard, 2002; Singh and Gan, 2000), snow grain size and snow
density (Dai et al., 2012), elevation (Savoie et al., 2009), geographic
location and time of day (Sturm et al., 2010), wind speed and topo-
graphic relief (Smith and Bookhagen, 2016). In this study, we propose
the following formulas (Eqs. (1) and (2)) to describe snow depth and
snow water equivalent retrieval processes:

= … +[DS] F (A, T, G, L, S, D ) ε (1)

in which, F ( ) denotes the transformation function. DS is the digital
signal from remote sensing sensor (PM, active microwave, visible
spectral remote sensing etc.). A is the atmosphere (wind speed, air
temperature, humidity, precipitation etc.). T is the topography (eleva-
tion, terrain slope, aspect etc.). G is the ground (ground surface tem-
perature, vegetation type etc.). L is the location (latitude, longitude). S
is the snow properties (snow grain size, density, reflectance, snow
depth, snow water equivalent etc.). D is the day of year. ε is residual
error or uncertainty (uncertainty between sensor signal and measured
snow properties).

Using the parameters (A, T, G, L, S, D …) to yield DS, is called the
snow forward process (Eq. (1)). For example, Forman and Reichle
(2015) used snow property parameters (S), which includes snow water
equivalent, density and snow temperature, near-surface air temperature
(A), soil and vegetation temperature (G) as input parameters of SVM
approach (F(·)) to estimate PM brightness temperatures. Contrarily,
when DS and other parameters (A, T, G, L, D …) are used to generate
estimated value of snow parameters (e.g. snow depth), this process is
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