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33Enhancing thermal conductivity of nanofluids is an important objective in heat transfer applications.
34Experimental measurement of thermal conductivity is time consuming, laborious and expensive. One
35of the common ways to address these limitations involves developing theoretical models to study
36thermo-physical properties of nanofluid. However, most classical and empirical models fail in predicting
37experimental results with good precision. In this study, we developed support vector regression (SVR)
38models that are capable of predicting the thermal conductivity enhancement for metallic and metallic-
39oxide nanofluids. The accuracy and reliability of the developed models were assessed using statistical
40parameters such as correlation coefficient (R2), root mean square error (RMSE) and mean absolute error
41(MAE). The models were characterized with very high correlation coefficients of 99.3 and 96.3% for the
42metallic and metallic oxide nanofluids, respectively. While the RMSE obtained were 1.11 and 1.33 for
43the metallic and metallic oxide nanofluids, respectively. In addition, the results of the models were com-
44pared with Hamilton-Crosser (HC) model and other empirical models. The SVR models performed much
45better than all the models examined. Furthermore, the effects of temperature, volume fractions, nanopar-
46ticle size & type and basefluids types were correlated with experimental data in order to assess the per-
47formance of the developed models. The results indicate that SVR predictions were accurate and better
48than common theoretical models.
49� 2017 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder
50Technology Japan. All rights reserved.
51

52

53

54 1. Introduction

55 Rapid industrialization expansion has inspired the design of
56 highly efficient energy systems and as a consequence, the energy
57 dissipation requirement of these new systems necessitates the
58 use of advanced cooling fluids in order to maintain optimum per-
59 formance of the systems [1,2]. Prior to the seminal work of Choi
60 [3] on the enhancement of thermal conductivity of fluids, common
61 liquids such as water, engine oil and ethylene glycol were used as
62 coolants in industrial applications. However, these materials exhi-
63 bit relatively low thermal conductivity which imposes limitation

64on systems’ performance. Choi’s introduction of nanofluids thus
65becomes very significant as it paved way to circumvent this chal-
66lenge. Following his discovery, research efforts towards synthesis
67of novel nanofluids, measurement and prediction of the thermo-
68physical properties of nanofluid have seen significant increase till
69date [4,5].
70Nanofluids are unique class of fluids which are formulated by
71addition of nano-sized particles into a common cooling fluids such
72as water or ethyl glycol. The resultant effect of adding nanoparti-
73cles to cooling fluids is improvement of the thermo-physical prop-
74erties of the fluid. Nano-sized particles can be metals, metallic/
75non-metallic oxides or carbon nanotubes, with size ranging from
761 to 100 nm [6]. Nanoparticles exhibit high thermal conductivity
77due to their large surface-area-to-volume ratio [7]. Therefore, addi-
78tion of nanoparticles into base fluids (cooling liquid) raises the
79thermal conductivity of the base fluid significantly [5,8]. This prop-
80erty makes nanofluids to be extremely important for many practi-
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81 cal engineering applications such as heat transfer, solar collectors,
82 heat exchangers, heat pipes and electronics, fuel cell, and
83 refrigerators.
84 Thermal conductivity is one of the most desirable properties of
85 nanofluids [9]. It is understood that when the thermal conductivity
86 of nanofluids increases, its heat transfer capability increases
87 accordingly, consequently leading to an increase in the heat
88 exchange efficiency of the nanofluid [10,11]. Therefore, thermal
89 conductivity enhancement plays a central role in nanofluid
90 research. There has been numerous experimental and theoretical
91 studies in this field [9,12–14]. Investigating thermal conductivity
92 enhancement via experimental approach is a quite reliable and
93 effective means. However, the procedure is usually time-
94 consuming, laborious and expensive [15,16]. Also, there are
95 methodical problems associated with measurements of certain
96 parameters such particle size, and volume concentration [17,18].
97 These limitations make theoretical studies necessary. Also, in order
98 to fully understand the science of nanofluid, there has to be har-
99 mony between the experimental and theoretical studies. Unfortu-

100 nately, nanofluid offers a major theoretical problem because
101 experimental values of thermal conductivity differ by one order
102 of magnitude from many theoretical models.
103 To this end, many classical and empirical models have been for-
104 mulated to correlate the enhancement of thermal conductivity
105 with experimental studies. The existing classical models that are
106 used for prediction of thermal conductivity enhancement include
107 Maxwell [19], Hamilton-Crosser [20], Nan [21], etc. Details of these
108 models can be found in the literatures [15,22,23]. It is a fact the
109 classical models and their derivatives suffer from underestimation
110 of measured thermal conductivity [22,24]. One possible reason is
111 that most of the models are derived from advanced parameters
112 which are not regular features associated with nanofluids. Hence,
113 this limits their general applicability in predicting emerging
114 nanofluids [25].
115 Recently, researchers have turned to Artificial Neural Network
116 (ANN) to model the behaviour of nanofluids due to the above men-
117 tioned limitation of existing models [10,15,18]. Literature survey
118 reveals that ANN has been extensively used to study nanofluids
119 with much improved performance compared to classical and
120 empirical models [17,26,27]. However, when dealing with limited
121 experimental data as in the case of nanofluid research, ANN is lar-
122 gely disadvantageous [10]. For this reason, support vector regres-
123 sion (SVR) is a viable computational tool that performs very well
124 in the presence of few dataset [28]. Also, there are reports that sup-
125 port vector machine (SVM) performs better than ANN in some
126 studies [29–31]. Surprisingly, researchers have made very limited
127 use of SVM in the prediction of thermo-physical properties of
128 nanofluids despite its superior generalization ability when dealing
129 with few dataset. To the best of our knowledge, the only study that
130 has employed support vector machine in the study of thermo-
131 physical properties of nanofluids is the work of Meybodi et al.
132 [26], wherein they predicted viscosity of water-based nanofluids
133 using least square support vector machine (LSSVM).
134 The paper sought to bridge the gap between measured thermal
135 conductivity and theoretical prediction by using a computational
136 intelligence approach. We developed data-driven computational
137 models that are capable of predicting thermal conductivity
138 enhancement of nanofluids with high accuracies. A five-input
139 and a four-input support vector machine models have been devel-
140 oped for metallic oxides and metal-based nanofluids, respectively.
141 The accuracies of the models were benchmarked with experimen-
142 tal results to validate the robustness of the models. The results
143 obtained are very promising with correlation coefficient of up to
144 99.3% between the predicted and experimental values. In other
145 to justify the superiority of the developed models, we compared
146 the results obtained from our studies with previous models

147(Hamilton-Crosser [32], Peterson & Li [33], Pak & Choi [34] and
148Timofeeva [35]. Also, the effects of suspension temperature, vol-
149ume fraction, nanoparticle size, base fluid and nanoparticle types
150on thermal conductivity of nanofluids were studied using the
151developed support vector regression (SVR) models. This work high-
152lights the applicability of SVR in prediction of thermal conductivity
153enhancement of nanofluids.
154The remaining part of this work is organized as follow; Section 2
155contains description of the proposed technique. Section 3 contains
156empirical studies which include description of datasets, experi-
157mental set-up and optimization strategy. Section 4 presents results
158and discussion while Section 5 contains the conclusion of this
159work.

1602. Brief description of the proposed techniques

161SVR is a robust computational algorithm derived from statis-
162tical learning theory (SLT). The framework of SVR was devel-
163oped by Vapnik in 1995 [36]. In order to minimize error, SVR
164makes use of Structural Risk Minimization (SRM) principle,
165which has proven to be better than traditional Empirical Risk
166Minimization (ERM) principle employed by conventional neural
167networks [37]. The main idea in SRM involves minimizing the
168upper bound on the expected risk thereby increasing SVR ability
169to generalize well in the presence of few data-point and
170descriptive features [29].
171The fundamental idea in SVR entails mapping the inputs into a
172high-dimensional feature space by nonlinear transformation map-
173ping function that is defined by inner product function. This allows
174a linear regression to be performed in the high dimensional space.
175For the implementation of the SVR, Vapnik introduced the e-
176insensitive loss function for which errors below e > 0, determined
177a priori are not penalized [38,39].
178

jkr � f ðxiÞje ¼ maxf0; jkr � f ðxiÞj � eg ð1Þ 180180

181SVR algorithm selects a function that estimates the actual value
182of target as close as possible to the reference value with a precision
183e, which measures the flatness of generalized pattern and the max-
184imum permitted deviations of the targets from the estimated val-
185ues for all the given training dataset [29]. The input parameters are
186then mapped via a Gaussian kernel nonlinear mapping function
187onto n-dimensional feature space for which a linear model given
188in (2) is to be estimated.
189

f ðxÞ ¼ ~xUðxÞ þ b ð2Þ 191191

192where ~x, U 2 RN, b 2 R; based on supplied training data {xi, kei}:
193i = 1, 2, 3 . . . n. RN is the space containing the patterns of the input
194parameters. ~x is the weight of the function and b is a bias factor.
195Small test error is sought by minimizing the regularized risk
196function,
197

1
2
k~xk2 þ C � Rempðf Þ ð3Þ 199199

200The complexity of the model is influenced by k~xk2 and the
201empirical risk Remp(f) is given as
202

Rempðf Þ ¼ 1
n

Xn
i¼1

jke � f ðxiÞje ð4Þ
204204

205For the purpose of getting a small risk, SLT imposes the require-
206ment of controlling the duo of the training error and complexity of
207the model whereby the data is described using a simple model. SVR
208achieves these objectives through the minimization of the k~xk2
209and measuring the deviation of the training data lying outside
210the loss function with a non-negative slack variables. Hence, the
211resulting optimization problem is
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