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A B S T R A C T

Fine ambient particulate matter has been widely associated with multiple health effects. Mitigation hinges on
understanding which sources are contributing to its toxicity. Black Carbon (BC), an indicator of particles gen-
erated from traffic sources, has been associated with a number of health effects however due to its high spatial
variability, its concentration is difficult to estimate. We previously fit a model estimating BC concentrations in
the greater Boston area; however this model was built using limited monitoring data and could not capture the
complex spatio-temporal patterns of ambient BC. In order to improve our predictive ability, we obtained more
data for a total of 24,301 measurements from 368 monitors over a 12 year period in Massachusetts, Rhode Island
and New Hampshire. We also used Nu-Support Vector Regression (nu-SVR) – a machine learning technique
which incorporates nonlinear terms and higher order interactions, with appropriate regularization of parameter
estimates. We then used a generalized additive model to refit the residuals from the nu-SVR and added the
residual predictions to our earlier estimates. Both spatial and temporal predictors were included in the model
which allowed us to capture the change in spatial patterns of BC over time. The 10 fold cross validated (CV) R2 of
the model was good in both cold (10-fold CV R2 = 0.87) and warm seasons (CV R2 = 0.79). We have suc-
cessfully built a model that can be used to estimate short and long-term exposures to BC and will be useful for
studies looking at various health outcomes in MA, RI and Southern NH.

1. Introduction

Fine ambient particulate matter (with an aerodynamic diameter of
2.5 µm – PM2.5) has been widely associated with multiple health effects
including cardiovascular and lung-cancer mortality following both
chronic (Dockery et al., 1993; Krewski et al., 2009; Lepeule et al., 2012;
Pope et al., 1995) and acute (Analitis et al., 2006; Schwartz and Marcus,
1990) exposures. As it is composed of a mixture of heterogeneous
substances, efficiently mitigating PM2.5 hinges on understanding the
health effects of components arising from different sources. In parti-
cular, particles arising from fuel combustion have been independently
associated with mortality (Laden et al., 2000; Ostro et al., 2007).

Black Carbon (BC) has been identified primarily as a marker of
diesel traffic, followed by general traffic with minor contributions from
biomass combustion in the U.S. (Sasser, 2012). Time-series studies,
which rely on daily exposures at one or several central monitors have
shown associations with respiratory (Bremner et al., 1999), cardiovas-
cular (CVD) and total mortality (Maynard et al., 2007). While time-
series studies look at the effect of acute exposures, other studies have

also shown an association between chronic BC exposure and each of
increased blood pressure (Schwartz et al., 2012), faster rates of lung
function decline (Lepeule et al., 2014), impaired cognitive function
(Power et al., 2010), and all-cause, cardiovascular, lung cancer and
cardiopulmonary mortality (Beelen et al., 2008; Filleul et al., 2005;
Smith et al., 2009).

However, relying on central monitors rather than individual level
exposures leads to high exposure misclassification as there is spatial
variability in concentrations (Clougherty et al., 2008; Künzli et al.,
2005). While individual exposures may be determined through the use
of personal monitoring devices, this limits sample size and duration of
follow-up. Using personal monitors, Jansen et al. (2005) collected ex-
posure data of 16 participants for 2 weeks and found an association
between BC exposure and increased airway inflammation among
asthmatics.

Another approach to estimate individual exposures is Land Use
Regression (LUR) (Hoek et al., 2008; Ryan and LeMasters, 2007). LUR
models, which account for spatial variability by using data on spatial
predictors of emissions to predict exposure, are able to capture
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variations in exposure among study participants residing in different
locations.

Several previous land use regression models were based on short
duration intensive monitoring campaigns which could result in in-
sufficient temporal resolution.

If pollution controls such as Diesel fuel composition and retrofit of
particle filters on buses reduce exposure in areas heavily impacted by
Diesel buses, but not elsewhere, the spatial pattern can change over
time, and an LUR model will typically fail to pick up such spatio-tem-
poral changes. Changes in traffic patterns and density over time can
similarly produce changes in the spatial distribution of BC. Moreover, if
the year with the intensive monitoring campaign had atypical weather,
such as an unusual number of inversions, or more or less transported BC
than usual due to differences in the tracking of weather fronts and
prevailing winds, the estimated spatial distribution over the entire
study period may not adequately reflect the spatial distribution at any
given time.

This year to year variability in meteorology can be accounted for by
obtaining multiple years of daily BC measurements, and including in-
teraction terms between land use terms (that are surrogates for BC
emissions) and mixing height and wind speed. Such terms model how
concentrations vary for a given amount of emissions. Resulting ex-
posure estimates are valuable for examining shorter term effects of BC
on acute events (blood pressure etc.) as well as reflect change in the
spatial distribution of BC in that year resulting from meteorology.
Moreover, if BC measurements are available for many years, LUR
models can capture the impact of changes in fuel and pollution controls,
which will improve predictions by better capturing spatio-temporal
variation in BC levels.

We previously fit such a model predicting black carbon in for the
years 1999–2004 in the greater Boston area (Gryparis et al., 2007).
Subsequently, resulting exposure predictions have been used to show an
association with a variety of health outcomes in Boston-area cohorts,
including: increased blood pressure (Alexeeff et al., 2011), athero-
sclerosis (Wilker et al., 2013) and decline in cognitive function (Power
et al., 2010; Suglia et al., 2008).

Despite evidence generated by studies using existing BC predictions,
they have some limitations. First, due to the moderate size of the data
set spanning over four years, the data did not support very large models
that allowed for complex spatio-temporal patterns likely present in the
true pollution fields. Second, again due to the modest number and lo-
cation of the available BC monitors over a decade ago, the range over
time and space over which the model can produce reliable estimates is
limited to the greater Boston area of the model. Therefore, now that
more data is available, more advanced models incorporating nonlinear
terms and higher order interactions, with appropriate regularization of
parameter estimates, would likely improve prediction. In addition, New
England is home to a large number of cohort studies that offer the
opportunity to examine novel outcomes and biomarkers that provide
evidence about the biological pathways responsible for observed health
effects.

Hence, we expanded the geographic area of the original model by
adding data from three states: Massachusetts, New Hampshire and
Rhode Island, updated monitoring data up to and including 2011, and
applied machine learning techniques that allow for complex and non-
linear relations between predictors and BC.

Unlike prediction using regression modeling, machine learning does
not require that we make any assumptions regarding the functional
form of the relationship between predictors and the variable of interest.
Instead, machine learning uses the data provided and, within the lim-
iting parameters specified, builds the prediction model. The model we
chose to use; nu-Support Vector Regression has been demonstrated to
predict ambient air pollutants with good generalizability (Hajek, 2015;
Lu and Wang, 2005; Sotomayor-Olmedo et al., 2013) and is discussed in
further detail below.

One limitation of the nu-SVR approach is that while it captures all

possible interactions, it only partially captures nonlinearities.
Generalized additive models (GAM) on the other hand can capture
complex nonlinear relationships through smooth terms. This approach
can be thought of as simple gradient boosting. Gradient boosting has
been used in machine learning techniques like random forests to find
the best fitting model by iteratively fitting a new model to the error
from previous models (Natekin and Knoll, 2013). Fitting multiple re-
latively weak models can yield a better fit than one strong model. Here
we implemented a simple form of this technique and boosted the power
of our nu-SVR model using a second weaker model.

Our goal is to employ this approach to generate exposure predic-
tions with greater predictive power than in previous models for Black
Carbon levels.

2. Data and methods

2.1. Monitoring data

In order to capture the spatial and temporal variability of Ambient
Black Carbon (BC) in the study area of interest, we added measure-
ments from the greater Boston area, Cape Cod, Western and Central
Massachusetts in addition to Rhode Island and New Hampshire from
2000 to 2011. To improve our ability to separate spatial, temporal, and
spatio-temporal variability in BC levels, we focused on adding locations
with a large number of repeated measurements. In total, monitoring
data was obtained from five sources described below. A total of 24,301
observations were included from 368 unique monitoring locations (see
Fig. 1 for a map of monitors). The mean BC concentration was 0.59 μg/
m3 with a standard deviation of 0.42 μg/m3 and a maximum of 3.25 μg/
m3.

2.2. Sources of measurements

As part of a National Institute of Environmental Health Sciences
(NIEHS) funded study, we carried out measurements at 53 sites be-
tween 2006 and 2008 around the Boston area, which were selected
based on gaps in previous spatial measurements. We obtained 2798 24-
h measurements using an Aethalometer® (Model AE-16 by Magee
Scientific Corp.).

The Northeast States for Coordinated Air Use Management
(NESCAUM) conducted a monitoring study to look at the spatial
variability of pollution generated from traffic sources in the Boston area
between 1999 and 2003 (Allen, 2014). BC was measured using an
Aethalometer at 12 sites. This study provided 4767 24-h observations.

The Interagency Monitoring of Protected Visual Environments
(“IMPROVE”) is a network of monitor sites in national parks and
wilderness areas, that measures Elemental Carbon (EC) via thermal/
optical reflectance (IMPROVE, 2016). We obtained 2478 24-h mea-
surements from the Quabbin Summit and Cape Cod locations from 2001
to 2011.

The U.S. Environmental Protection Agency (EPA) requires states
to monitor PM2.5. Teflon® filters used to collect 24-h PM2.5 ambient
measurements throughout MA and Southern NH were obtained from
the state environmental agencies, and we analyzed them for BC using a
smokestain reflectometer (EEL Model M34D by Diffusion Systems Ltd).
Reflectance was transformed to absorption coefficients according to ISO
9835. We obtained 6073 measurements from 23 sites in MA and 591
measurements from 7 sites in Southern NH for the years 2000–2011.
We also obtained a total of 7285 Aethalometer BC observations from
the RI Department of Environmental Management, from 7 sites between
2005 and 2011.

The Normative Aging study (NAS) is a longitudinal study of aging
established by the Veterans Administration in 1961. We conducted in-
door exposure monitoring between 2006 and 2010 at the homes of
study participants. Measurements were taken in the main activity room
of participants’ homes over the period of one week using a Teflon® filter
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