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a b s t r a c t

The long-term annual mean wind power density (WPD) is an important indicator of wind as a power
source which is usually included in regional wind resource maps as useful prior information to identify
potentially attractive sites for the installation of wind projects. In this paper, a comparison is made of
eight proposed Measure-Correlate-Predict (MCP) models to estimate the WPDs at a target site. Seven
of these models use the Support Vector Regression (SVR) and the eighth the Multiple Linear
Regression (MLR) technique, which serves as a basis to compare the performance of the other models.
In addition, a wrapper technique with 10-fold cross-validation has been used to select the optimal set
of input features for the SVR and MLR models. Some of the eight models were trained to directly estimate
the mean hourly WPDs at a target site. Others, however, were firstly trained to estimate the parameters
on which the WPD depends (i.e. wind speed and air density) and then, using these parameters, the target
site mean hourly WPDs. The explanatory features considered are different combinations of the mean
hourly wind speeds, wind directions and air densities recorded in 2014 at ten weather stations in the
Canary Archipelago (Spain).
The conclusions that can be drawn from the study undertaken include the argument that the most

accurate method for the long-term estimation of WPDs requires the execution of a specially trained
model which considers the variability of the wind speeds of the reference stations, as well as of the wind
directions and air densities, and in addition the functional manner in which these variables participate in
the proposed MCP models. It is also concluded that it is important to consider the annual variation of air
density even in regions at sea level. It is further concluded that, of the eight MCP models under compar-
ison, the one that predicts the WPDs based on two sub-models (which estimate the wind speeds and air
densities in an unlinked manner) always provides the best MAE (Mean Absolute Error), MARE (Mean
Absolute Relative Error) and R2 (Coefficient of determination) metrics, with the differences being statis-
tically significant (5% significance) for most of the cases assessed. Additionally, the regulatory capacity of
the SVR technique was sufficient to manage most of the overfitting problems, and hence the contribution
of the wrapper method was not relevant in our study.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this section, a background is firstly provided to the problem
related to long-term estimation of Wind Power Densities (WPDs)
when Measure-Correlate-Predict (MCP) methods are used which
are based on information provided by multiple reference weather
stations (WSs). Subsequently a description is given of the aim
and original contribution of this paper.

1.1. Background

In the scientific literature, an extensive collection of MCP meth-
ods [1] have been proposed for hindcasting of the long-term wind
characteristics at sites for which only measurements recorded over
a short time period are available.

The most commonly proposed and used methods to date in the
wind industry have been based on information obtained from a
single reference station. However, in the scientific literature con-
cerned with renewable energies a growing number of proposals
can be seen for methods which are based on the use of several ref-
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Nomenclature

AEMET Spanish initial: state meteorological agency of the Span-
ish Government

aai, aw1i, aw2i parameters that define the second molar virial
coefficients of the mixture. Eqs. (13) and (14). Table 3

aaai, aawi parameters that define the third molar virial coeffi-
cients of the mixture. Eqs. (16) and (17). Table 4

ANN Artificial Neural Network
awwi parameters that define the third molar virial coefficients

of the mixture. Eq. (18) and Table 4
b bias parameter in support vector regression. Eqs. (28),

(34) and (36).
Baa second virial air–air coefficient (m3 mol�1). Eqs. (11)

and (13)
Baw second cross virial coefficient (m3 mol�1). Eqs. (11) and

(14)
BH Benjamini and Hochberg step-up procedure [56]
Bm second molar virial coefficient of the mixture. Eq. (11)
Bww second virial water–water coefficient (m3 mol�1). Eqs.

(11) and (15)
C constant that determines the trade-off between the flat-

ness of f(x) and the amount up to which deviations lar-
ger than � are tolerated in Support Vector Machine. Eqs.
(29), (30) and (33)

Caaa third virial air coefficient (m6 mol�2). Eqs. (12) and (16)
Caaw third air–air–water virial coefficient (m6 mol�2). Eqs.

(12) and (17)
Caww third air–water–water virial coefficient (m6 mol�2). Eqs.

(12) and (18)
Cwww third virial water coefficient (m6 mol�2). Eqs. (12) and

(19)
CIPM International Committee for Weight and Measures
Cm third molar viral coefficient of the mixture. Eq. (12)
D variable that represents the wind direction in degrees
êi variable that represents the estimated values. Eqs.

(39)–(42)
E½�� population mean of a random variable. Eqs. (1) and (3)

E ½�̂� mean of an estimated variable. Eqs. (4) and (6)dE½�� estimated mean of a variable. Eq. (5)
ef enhancement factor (non-dimensional). Eqs. (8) and

(20)
f AðB1; . . . ;BpÞ regression method that uses the features B1; . . . ;Bp

to obtain a forecast of variable A
FDR False Discovery Rate
f ðxÞ regression function
f qðqÞ air density probability density function. Eq. (3)
f v ðvÞ wind speed probability density function. Eq. (3)
f qv ðq;vÞ joint probability density function of q and v. Eq. (44)
f w;bðxÞ regression function in Support Vector Machine that de-

pends on w and b. Eq. (34)
fWPD½q; v� wind power density probability density function. Eq.

(44)
f bðxÞ regression function in Support Vector Machine that de-

pends on b. Eq. (25)
kðxi; xjÞ kernel function in Support Vector Machine. Eqs. (32),

(34), (35) and (36)
gi parameters of saturation vapour pressure. Eq. (9).

Table 2
H relative air humidity (%)
H0 null hypothesis. Eq. (43)
H1 alternative hypothesis. Eq. (43)
ic1,. . ., ic7 parameters of isothermal compressibility. Eq. (21).

Table 2
ISA International Standard Atmosphere

ITC Spanish initials: Technological Institute of the Canary
Islands

‘p;� loss functions in Support Vector Machines. Eqs. (30) and
(31)

Ma molar mass of dry air (kg mol�1). Eq. (7)
MAE Mean Absolute Error (W m�2). Eq. (40)
MARE Mean Absolute Relative Error. Eq. (41)
MCP Measure–Correlate–Predict
ML Machine Learning
MLR Multiple Linear Regression. Eq. (24)
Mv molar mass of water vapour (kg mol�1). Eq. (7)
M1,. . ., M8 MCP models to estimate the Wind Power Density that

are compared in this study
mvi parameters of molar volume of saturated liquid water.

Eq. (22). Table 2
n number of data. Eqs. (2)–(6), (24), (27), (29), (30), (33),

(39)–(42)
oi variable that represents the observed values. Eqs.

(39–42)
�o variable that represents the mean of observed values.

Eq.(42)
S support vectors in Support Vector Machine
p barometric pressure (hPa). Eqs. (7), (8), (10) and (20)
p loss function parameter. Eq. (31)
psv saturation vapour pressure (Pa). Eqs. (8), (9) and (20)
p-value estimated probability of rejecting the null hypothesis

(H0) when that null hypothesis is true
R gas constant of dry air (J K�1 mol�1)
R2 coefficient of determination (%). Eq. (42)
Rd;Rh feature space where ‘‘h” is usually bigger than ‘‘d”
RFE Recursive Feature Selection
RMSE Root Mean Square Error. Eq. (39)
SVM Support Vector Machine
SVR Support Vector Regression
ta ambient temperature in degrees celsius (�C). Eqs. (7),

(9), (10), (13–20) and (22).
v variable which represents the wind speed of weather

stations (ms�1). Eqs. (3) and (44)
vi variable which represents the mean hourly wind speed

(ms�1). Eqs. (4), (5), (6) and (38)
�v variable which represents the mean wind speed (ms�1).

Eq. (10)
vm monthly mean wind speed (ms�1). Eq. (6)
w characteristic parameter in Support Vector Regression.

Eqs. (28–30), (33), (34) and (36)
WPD Wind Power Density (Wm�2). Eq. (38)
WPDi variable that represents the mean hourly Wind Power

Density (Wm�2). Eq. (38)
WPD Mean Wind Power Density (Wm�2). Eq. (2)
WS-1. . .WS-10. weather stations
wwi parameters that define the second molar virial coeffi-

cient of the mixture. Eq. (15). Table 3
wwwi parameters that define the third molar virial coefficient

of the mixture. Eq. (19). Table 4
Y set of target sites
yi vector which contains the observed wind power values

at the target site. Eqs. (28–31) and (33)
X set of references sites
xi; xj vector which contains the observed wind power values

at the references site. Eqs. (24), (28–36)
xO2 molar fraction of oxygen in air. Eq. (23)
xN2 molar fraction of nitrogen in air. Eq. (23)
Xv molar fraction of water vapour in air
Z compressibility factor of air (non-dimensional). Eq. (10)
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