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H I G H L I G H T S

• Hybrid two-phase PSO-SVR is integrated with CEEMDAN multi-resolution tool for demand forecasting.

• ICEEMDAN-PSO-SVR is evaluated against single-phase hybrid and standalone models.

• ICEEMDAN-PSO-SVR outperforms several benchmark models at multiple-horizons.

• Two-phase hybrid model has potential applications in energy management systems.
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A B S T R A C T

Real-time energy management systems that are designed to support consumer supply and demand spectrums of
electrical energy continue to face challenges with respect to designing accurate and reliable real-time forecasts due
to the stochasticity of model construction data and the model’s inability to disseminate both the short- and the long-
term electrical energy demand (G) predictions. Using real G data from Queensland, Australia’s second largest state,
and employing the support vector regression (SVR) model integrated with an improved version of empirical mode
decomposition with adaptive noise (ICEEMDAN) tool, this study aims to propose a novel hybrid model: ICEEM-
DAN-PSO-SVR. Optimization of the model’s weights and biases was performed using the particle swarm optimi-
zation (PSO) algorithm. ICEEMDAN was applied to improve the hybrid model’s forecasting accuracy, addressing
non-linear and non-stationary issues in time series inputs by decomposing statistically significant historical G data
into intrinsic mode functions (IMF) and a residual component. The ICEEMDAN-PSO-SVR model was then in-
dividually constructed to forecast IMFs and the residual datasets and the final G forecasts were obtained by ag-
gregating the IMF and residual forecasted series. The performance of the ICEEMDAN-PSO-SVR technique was
compared with alternative approaches: ICEEMDAN-multivariate adaptive regression spline (MARS) and ICEEM-
DAN-M5 model tree, as well as traditional modelling approaches: PSO-SVR, MARS and M5 model tree algorithms.
To develop the models, data were partitioned into different subsets: training (70%), validation (15%), and testing
(15%), and the tuned forecasting models with near global optimum solutions were applied and evaluated at
multiple horizons: short-term (i.e., weekends, working days, whole weeks, and public holidays), and long-term
(monthly). Statistical metrics including the root-mean square error (RMSE), mean absolute error (MAE) and their
relative to observed means (RRMSE and MAPE), Willmott’s Index (WI), the Legates and McCabe Index E( )LM and
Nash–Sutcliffe coefficients E( NS), were used to assess model accuracy in the independent (testing) period. Empirical
results showed that the ICEEMDAN-PSO-SVR model performed well for all forecasting horizons, outperforming the
alternative comparison approaches: ICEEMDAN-MARS and ICEEMDAN-M5 model tree and the PSO-SVR, PSO-
MARS and PSO-M5 model tree algorithm. Due to its high predictive utility, the two-phase ICEEMDAN-PSO-SVR
hybrid model was particularly appropriate for whole week forecasts ( =E 0.95NS , =MAPE 0.89%, =RRMSE 1.22%,
and =E 0.79LM ), and monthly forecasts ( =E 0.70NS , =MAPE 2.18%, =RRMSE 3.18%, and =E 0.56LM ). The ex-
cellent performance of the ICEEMDAN-PSO-SVR hybrid model indicates that the two-phase hybrid model should be
explored for potential applications in real-time energy management systems.
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1. Introduction

Electricity demand (G) forecasting can provide essential informa-
tion that is likely to be utilized for energy transactions in competitive
electricity markets [1–3]. Policies addressing energy distribution and
pricing and providing energy security to a growing population requires
accurate forecasting of G data, especially for short-term periods (e.g.,
daily). Estimating G is a very sensitive task as an error in under- or over-
estimation of even just 1% can lead to millions of dollars in losses af-
fecting the whole energy policy and management system [3–5]. As
such, to estimate G, a very accurate near real-time (i.e., short-term), as
well as a foresight (i.e., long-term), forecasting model is a useful tool.

In recent years, data-driven models, such as autoregressive in-
tegrated moving average (ARIMA) [6], artificial neural network (ANN)
[7], support vector regression (SVR) [8], genetic algorithms, fuzzy
logic, knowledge-based expert systems [9], M5 model tree [10,11] and
multivariate adaptive regression splines (MARS) [12] have been widely
adopted in energy demand forecasting studies. Based on structural risk
minimization (SRM), the SVR model is able to reduce overfitting data
through the minimization of expected error of a learning algorithm
[13]. For example, the SVR model with a radial basis kernel function
(RBF) has been used for G forecasting [14]. The parameters of the SVR
model can be selected by different optimization techniques, such as a
grid search procedure [15], particle swarm optimization (PSO) [16]
and a genetic algorithm [17]. The PSO algorithm can be considered an
effective method to solve engineering challenges and can also be used
to provide better performance when used to screen the near global
optimum set of SVR parameters [18,19]. On the other hand, the MARS
model is a fast and flexible statistical tool that can be developed to
adopt a piecewise (linear or cubic) basis function [20,21]. In the lit-
erature, a significantly lower root-mean-square error (RMSE) was found
for the MARS model when compared with the piecewise regression-
based model used for G forecasting [12]. A piecewise linear function in
a M5 model tree [22] has also been used in different studies including
wave [10] and solar energy studies [11].

However, these types of traditional machine learning methods often
have challenges addressing non-stationary time series [22,23]. Non-
stationary time series problems can be addressed by different model
input data decomposition methods; for example, the discrete wavelet

transform (DWT) [8], maximum overlap discrete wavelet transform
(MODWT) [24], empirical mode decomposition (EMD) [25], ensemble
EMD (EEMD) [26], complete EEMD with adaptive noise (CEEMDAN)
[27] or improved CEEMDAN (termed hereafter as the ‘ICEEMDAN’ al-
gorithm) [28]. These algorithms resolve the frequency components
present in input series prior to using them in the model development
process. These techniques are powerful tools as they can be used to
decompose the original data into high and low frequency sub-series to
address the issues of non-stationary, repeats/periods and jump-type
perturbations before such data are utilized for prediction purposes.

In spite of the many applications of wavelet transforms (WT) (e.g.,
[29–34]), recent studies show major weaknesses in WT-based models,
particularly in their forecasting ability, which is limited by the adoption
of non-causal filters constructed with DWT algorithms. It should be
noted that DWT can induce the decimation effect in model input sub-
series coefficients, and therefore generate half the coefficients of the
detailed signal at the current level, while the other half of the smooth
version can be recursively processed by the high pass and low pass
filters at a coarser temporal resolution [35]. Although the problem of
the decimation effect in DWT can be solved by the more advanced
MODWT algorithm, selection of the mother wavelet is a still major issue
as there is no rule to select a near global optimum wavelet other than
applying an iterative trial and error process [24]. However, there is an
alternative decomposition tool available to address such issues: the self-
adaptive EMD algorithm that splits data into several intrinsic mode
functions (IMFs) and a residual data subset. While the frequent ap-
pearance of mode mixing in the EMD algorithm is problematic [26], it
can be addressed by the EEMD-based model, which is able to obtain a
true number of IMFs. However, when a signal is reconstructed using the
EEMD process, different numbers of IMFs can be obtained which gen-
erates a new problem [27]. In order to resolve all of these issues,
CEEMDAN was developed [27] to precisely reconstruct the original
time series data and give a better spectral separation of the IMFs at a
lower computational cost. Some of the residual noise within IMFs and
the slower performance of the algorithm compared to the EEMD are
two major issues associated with the CEEMDAN algorithm [28]. Hence,
the ICEEMDAN algorithm was developed to address issues of model
input decomposition [28].

Few studies (e.g. [16,36,37]) have applied the ICEEMDAN for

Nomenclature

MW megawatt
G electricity load (demand; mega watts)
MARS multivariate adaptive regression splines
SVR support vector regression
RMSE root-mean square error
MAE mean absolute error
RRMSE relative root-man square error, %
MAPE mean absolute percentage error, %
WI Willmott’s index
ENS Nash–Sutcliffe coefficient
ELM Legates and McCabe Index
ω weighting factor of PSO
ωmin and ωmax the minimum and maximum of ω
RBF radial basis function for SVR
ICEEMDAN improved version of empirical mode decomposition

with adaptive noise
ε loss function
σ kernel width for SVR model
C regulation for SVR model
PSO particle swarm optimization
GCV generalized cross-validation
Tmax maximum number of iterations in PSO

ECDF empirical cumulative distribution function
IMF intrinsic mode functions
ARIMA autoregressive integrated moving average
ANN artificial neural network
AEMO australian energy market operator
DWT discrete wavelet transform
c1 and c2 PSO parameters
PACF partial auto-correlation function
MSE mean square error
R2 coefficient of Determination
MODWT maximum overlap discrete wavelet transform
EMD empirical mode decomposition
WT wavelet transforms
N the initial population of PSO
Gi

for ith forecasted value of G, MW)
Gi

obs ith observed value of G, MW)
G for the mean of forecasted values
Gobs the mean of observed values
FE| | forecasted error statistics
EEMD ensemble EMD
CEEMDAN complete EEMD with adaptive noise
r correlation coefficient
VMD variational mode decomposition
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