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A B S T R A C T

This paper investigates the use of the hierarchical mixture of linear regressions (HMLR) and variational inference
for multivariate spectroscopic calibration. The performance of HMLR is compared to the classical methods: partial
least squares regression (PLSR), and PLS embedded locally weighted regression (LWR) on three different NIR
datasets, including a publicly accessible one. In these tests, HMLR outperformed the other two benchmark
methods. Compared to LWR, HMLR is parametric, which makes it interpretable and easy to use. In addition,
HMLR provides a novel calibration scheme to build a two-tier PLS regression model automatically. This is
especially useful when the investigated constituent covers a large range.

1. Background

Partial least squares regression (PLSR) [1] and principal component
regression (PCR) [2] have been applied to NIR calibration for decades.
The beauty of these methods is that noisy and mutually dependent NIR
spectra are first dimensionally reduced to a few factors, which ensures
the following multiple linear regression (MLR) [3] process is properly
regularized. However, the limitations of these regression schemes are
also obvious: both the dimension reduction and the regression are linear,
which means the final derived model is a linear combination of all input
variables. This means neither of them can tackle non-linear effects. Lack
of non-linearity is critical especially when the target constituent covers a
large range. When a single linear model is forced to fit over a wide range,
significant biases often appear in the two tails.

Non-linear regression methods were introduced to save prediction
models from such heavy biases. Popular examples are support vector
machine (SVM) [4] and Gaussian process regression (GPR) [5]. Some
recent studies have proven these methods can be used to improve pre-
diction accuracy [6–8]. Very similar to kernel-based regression schemes,
local linear regression methods such as locally weighted regression
(LWR) were also proposed to give accurate and unbiased prediction
across the range [9]. These methods indeed break the limitations of
linear regression. However, they are not always practically applicable.
First of all, to build such kinds of models, a large data set is required. The
methods fail if there are not adequate training instances in the

neighborhood of the unknown observation. Secondly, using these
methods for out-of-sample prediction requires information of the whole
training set, including the spectra (or equivalently, the grammatrix in the
kernel methods) and corresponding reference values. The size of the
model grows with the size of the training set (i.e., these methods are all
non-parametric). Even if the storage of the system is not a limitation,
computational cost for making a prediction might be an intolerable issue.
Computational cost also makes it extremely difficult to implement these
methods in a high-speed on-line system. Finally, these models are
complicated for training. Training an LWR, for example, requires prior
knowledge of the number of neighbors, distance measurement, and
weight function. Even can be tuned by cross-validation, these
hyper-parameters are sensitive to the training set variation, which makes
them less robust than PLSR and more difficult to scale.

Another good solution is to build a two-tier PLSR model. In this kind
of scheme, the training set will be divided into two groups: high or low in
target value. Two PLSR models are fitted on each subset separately. This
regression method can also remove the bias in the two tails. However, it
is unclear how to split the data set, and how to choose the correct
component model for making the prediction. Improper segmentation (in
the calibration) and selection of model (in the prediction) will affect
prediction accuracy, especially for the samples near the segmentation
boundary.

The method proposed in this study, hierarchical mixture of linear
regressions (HMLR) [10] solves these issues. The calibration method
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assumes there are two or more underlying linear models behind the
dataset. By using the expectation maximisation (EM) and the variational
inference, the algorithm will find the most sensible component models
automatically through an iterative optimisation process. A set of gating
functions will also be trained simultaneously to assign individual
observation into the correct component model. In the end, the trained
model contains several independent linear models (e.g. PLSR or PCR) for
different subsets of the training set and a set of gating functions.
Compared to GPR and LWR, it is entirely parametric, which makes it
possible to interpret and easy to use. It is also simple for training, only the
number of PLS factors and spectral preprocessing methods need to be
determined.

2. Methodology

2.1. Dimension reduction

For all calibration methods, the target is to train a regression model
from a set of N training instances fxn; yng, where xn is the original NIR
spectrum and yn is the lab measurement of the target constituent. Since
NIR spectra are mostly high dimensional and mutually dependent,

dimension reduction is applied to the original space. Partial least squares
(PLS) and principal component analysis (PCA) are the most popular data
shrinkage methods [11,12]. In this research PLS with NIPALS decom-
position was used to transform original space xn into a selection of latent
variables ϕn [13]. PLSR is a result of direct MLR of ϕn on yn. HMLR and
the other benchmark method LWR were also learned on the transformed
training set fϕn; yng.

2.2. Hierarchical mixture of linear regression

2.2.1. Overview of the graphical model
The structure of HMLR can be illustrated by Fig. 1. Red nodes in the

graph represent a set of sequential gating functions, and black nodes are
component linear regression models. When the new observation xnþ1 is
obtained, it flows through the decision tree, each gating node vi can
decide whether the corresponding component model Mi should be used
to predict the observation.

There are two different prediction strategies: hard split and soft mix.
Hard split means one and only one end model will be used to make the
prediction. In the soft mix scheme, gating nodes are probabilistic. Out-
puts of gating nodes are not binary decisions, but a set of probabilities of
using the corresponding component models. In the end, predictions from
all component models will be weighted averaged out by the likelihood. In
this study, soft mix of the component models was used to make the
prediction.

The critical part is how to learn the gating functionsV and component
linear models M from a given training set. For a total number of N
training instances fϕn; yng, assume there are K þ 1 underlying linear
regression functions wi; i ¼ 1; 2;…;K þ 1. Gating functions V indicate
the correct component model (or the weight of each component model)
for input ϕn. A labeling variable zn is assigned to each of the training
instances. In this study, zn is binary in training (i.e., either 0 or 1
depending on whether the corresponding end model is used). zn is a
vector of length K þ 1, corresponding to K þ 1 component models. The
goal of the whole training process is to find a set of parameters of fV ;Wg
that can explain the training set. It is helpful to put appropriate regula-
rization on these parameters to avoid over-fit.

Here Bayesian directed acyclic graph (DAG) [14] can be introduced to
describe dependency of different parameters and variables in the cali-
bration process. The DAG is shown in Fig. 2. The rectangular box rep-
resentsN training instances. The connection from the black dot Xn to ϕn is
deterministic transformation, which is a PLS data shrinkage process.
fα; βg are parameters of the regularization on coefficients fW;Vg. τ is a
vector of length of K þ 1, indicates the precision of reference for each
Bayesian linear regression.

2.2.2. Loss function: complete data log-likelihood
As introduced, the goal of training is to find a set of parameters that

can explain the training set. The complete data log-likelihood (CDLL) is
introduced as the loss function. According to the graphical model in Fig.
2, CDLL can be described by the following equation:

Fig. 1. Nested structure for integrating linear regression models. Red nodes:
gating nodes, determine weights of component linear models; Black nodes:
component models, each end model is an independent linear expert. (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 2. Directed graphical model for mixture of linear
experts.

C. Cui, T. Fearn Chemometrics and Intelligent Laboratory Systems 174 (2018) 1–14

2



https://isiarticles.com/article/110466

