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a b s t r a c t

Principal component regression (PCR) is awidely used two-stage procedure: principal com-
ponent analysis (PCA), followed by regression in which the selected principal components
are regarded as new explanatory variables in themodel. Note that PCA is based only on the
explanatory variables, so the principal components are not selected using the information
on the response variable. We propose a one-stage procedure for PCR in the framework
of generalized linear models. The basic loss function is based on a combination of the
regression loss and PCA loss. An estimate of the regression parameter is obtained as the
minimizer of the basic loss function with a sparse penalty. We call the proposed method
sparse principal component regression for generalized linear models (SPCR-glm). Taking
the two loss function into consideration simultaneously, SPCR-glm enables us to obtain
sparse principal component loadings that are related to a response variable. However,
a combination of loss functions may cause a parameter identification problem, but this
potential problem is avoided by virtue of the sparse penalty. Thus, the sparse penalty plays
two roles in this method. We apply SPCR-glm to two real datasets, doctor visits data and
mouse consomic strain data.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Principal component regression (PCR) (Massy, 1965; Jolliffe, 1982) is a widely used two-stage procedure: one first
performs principal component analysis (PCA) (Pearson, 1901; Jolliffe, 2002) and next considers a regression model in which
the selectedprincipal components are regarded as newexplanatory variables. PCRhasmany extensions (Hartnett et al., 1998;
Rosipal et al., 2001; Reiss and Ogden, 2007; Wang and Abbott, 2008). However, we should remark that PCA is based only on
the explanatory variables, so the principal components are not selected using the information on the response variable. If
the response variable has a close relationship with the principal components having small eigenvalues, PCR cannot achieve
sufficient prediction accuracy.
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To overcome this problem, Kawano et al. (2015) proposed a one-stage procedure for PCR. The basic loss function for this
one-stage procedure is based on a combination of the regression squared loss and PCA loss (Zou et al., 2006). The estimate of
the regression parameter is obtained as theminimizer of the basic loss functionwith a sparse penalty. This proposedmethod
is called the sparse principal component regression (SPCR). SPCR enables us to obtain sparse principal component loadings
that are related to a response variable, because the two loss functions are simultaneously taken into consideration. However,
the response variable is restricted to a continuous variable.

In this paper, we propose a one-stage procedure for PCR in the framework of generalized linear models (McCullagh and
Nelder, 1989). The regression loss is replaced by the negative log-likelihood function. The proposed method is called the
sparse principal component regression for generalized linear models (SPCR-glm). The main difference in SPCR-glm from
SPCR is the parameter estimation procedure, because the negative log-likelihood function in generalized linear models is
more complex than the regression squared loss. To obtain the parameter estimate, we propose a novel update algorithm
combining various ideas with the coordinate descent algorithm (Fu, 1998; Friedman et al., 2007; Wu and Lange, 2008).

The partial least squares (PLS) performs dimension reduction and regression analysis simultaneously (Wold, 1975; Frank
and Friedman, 1993). This concept is similar to that in SPCR. In the framework of generalized linear models, Bastien et
al. (2005) proposed PLS generalized linear regression (PLS-GLR). We will compare SPCR-glm with PLS-GLR numerically in
Sections 5, 6, and 7.

SPCR-glm is applied to two real datasets, doctor visits data and mouse consomic strain data, with a Poisson regression
model and multi-class logistic model, respectively. SPCR-glm provides more easily interpretable principal component (PC)
loadings and clearer classification on PC plots than various competing methods. For the doctor visits data, we can obtain
very clearly interpretable PC loadings. For the consomic strain mouse data, we can succeed to extract characteristic mouse
consomic strains with smaller within-variance. Through simulation studies, we examine that SPCR-glm is superior or
competitive to competing methods in terms of prediction accuracy.

This paper is organized as follows. In Section 2, we review sparse principal component analysis (SPCA) and SPCR. In
Section 3,wepropose SPCR-glmand introduce some special cases. In Section 4,weprovide a parameter estimation procedure
for SPCR-glm and discuss the selection of tuning parameters. Real data analyses and Monte Carlo simulations are illustrated
in Sections 5, 6, and 7. Concluding remarks are given in Section 8. The R language software package spcr, which implements
SPCR-glm, is available on the Comprehensive R Archive Network (R Core Team, 2018).

2. Preliminaries

2.1. Sparse principal component analysis

Let X = (x1, . . . , xn)T be an n×p datamatrix with n observations and p variables. Without loss of generality, the columns
of the matrix X are assumed to be centered. PCA is formulated as the following least squares problem (e.g., Hastie et al.
(2011)):

min
B

n∑
i=1

∥xi − BBTxi∥22 subject to BTB = Ik, (1)

where B = (β1, . . . ,βk) is a p× k principal component loading matrix, k denotes the number of principal components, Ik is
the k × k identity matrix, and ∥ · ∥2 is the L2 norm defined by ∥z∥2 =

√
zT z for an arbitrary finite vector z . Let X = UDV T ,

where U is an n× pmatrix with UTU = Ip, V = (v1, . . . , vp) is a p× p orthogonal matrix, and D = diag(d1, . . . , dp) is a p× p
matrix with d1 ≥ · · · ≥ dp ≥ 0. Then, the estimate of B is given by VkQ T , where Vk = (v1, . . . , vk) and Q is an arbitrary k× k
orthogonal matrix.

To easily interpret the principal component loading matrix B, Zou et al. (2006) proposed SPCA, which is given by

min
A,B

⎧⎨⎩
n∑

i=1

∥xi − ABTxi∥22 + λ
k∑

j=1

∥βj∥
2
2 +

k∑
j=1

λ1,j∥βj∥1

⎫⎬⎭
subject to ATA = Ik,

(2)

where A = (α1, . . . ,αk) is a p × k matrix, λ and the λ1,j’s (j = 1, . . . , k) are non-negative regularization parameters, and
∥ · ∥1 is the L1 norm defined by ∥z∥1 =

∑p
j=1|zj| for an arbitrary finite vector z = (z1, . . . , zp)T . A simple calculation shows

that SPCA can be expressed as

min
A,B

k∑
j=1

{
∥Xαj − Xβj∥

2
2 + λ∥βj∥

2
2 + λ1,j∥βj∥1

}
subject to ATA = Ik.

Given a fixed B, the minimizer A is obtained by solving the reduced rank Procrustes rotation, which is introduced in Zou et
al. (2006). Given a fixed A, the minimization problem for B is consistent with that in the elastic net (Zou and Hastie, 2005),
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