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a b s t r a c t

In this article, we propose a focused information criterion (FIC) and develop a frequentist
model averaging estimation procedure for a partial linear regression model when the
response is randomly right-censored. The proposed procedure is based on the quantile
regression and can depict the comprehensive character of the distribution of the response
by means of modeling different quantiles. The large sample properties of the proposed
estimators are established, and their finite sample properties are examined through
simulation studies. An application to a primary biliary cirrhosis data set is provided.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

The semiparametric partial linear regressionmodel is a flexible generalization of the linearmodel and the nonparametric 2

model. There has been a great amount of literature addressing the partial linear model from both theoretical and practical 3

perspectives since it was first introduced by Engle et al. (1986). See, for example, Heckman (1986), Chen (1988) and 4

Speckman (1988). Most of existing literature considers the partial linear model with fixed covariates. Obviously, model 5

selection is also an important issue for a partial linear model, especially when researchers are able to collect richer data 6

with the development of advanced techniques nowadays. To conductmodel selection, several criteria including AIC (Akaike, 7

1973), BIC (Schwarz, 1978), Lasso (Tibshirani, 1997), SCAD (Fan and Li, 2001) and FIC (Claeskens and Hjort, 2003) can 8

be employed. Nevertheless, as argued by many authors, these model selection procedures neglect the uncertainty in the 9

selection process andmay lose some useful information contained in potentialmodels (e.g., Hjort and Claeskens, 2003; Yuan 10

and Yang, 2005; Leung and Barron, 2006). An effective way to overcome the under-reporting problems of model selection 11

procedures is by model averaging, rather than attaching to a single ‘winning’ model. Model averaging is a generalization 12

of model selection and can provide a kind of insurance against model selection instability by weighting estimators across 13

many potential models. 14

Much early work discussed model averaging techniques from a Bayesian perspective. Those methods are widely used 15

recently due to the advance in computing techniques. However, model assumptions of these Bayesian model averaging 16
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methods are complicated and hard to be visually explained. A useful overview of the literature is referred to Hoeting et al.1

(1999). Contributions from a frequentist perspective are fewer, but this strategy has receivedmore andmore attention in the2

recent years. For example, Buckland et al. (1997) proposed a smoothed BICweight choicemethod formodel averaging. Hjort3

and Claeskens (2003) suggested a smoothed FIC weight choice method. Hansen (2007) gave a weight choosing procedure4

through the Mallows’ criterion. Zhang and Liang (2011) developed the smoothed FIC model averaging method for the5

generalized additive partial linearmodel. Zhang et al. (2014) considered themodel averaging approach for the linearmixed-6

effectsmodel. Xu et al. (2014) studied the focused information criterion and frequentistmodel averaging for the partial linear7

quantile regression model. These works provide insightful theoretical results and effective tools for practical applications.8

However, most of the existing literature considers uncensored data and there are few effective procedures for censored data9

that is very common in many applications.10

Censored data often arise in economics, biomedicine, industry and many other fields. For example, duration data in11

econometrics are typical censored response data. In biomedicine, the survival time of a patient is usually censored. A rich12

body of work exists with respect to the regression analysis of censored response data (Koul et al., 1981; Lai et al., 1995; Bang13

and Tsiatis, 2002; Jin et al., 2003; Portnoy, 2003; Chen et al., 2005; Zeng and Lin, 2007; Wang andWang, 2009; Shows et al.,14

2010; Du et al., 2013;Wang, Zhou and Li, 2013). For example, Bang and Tsiatis (2002) proposed a semiparametric procedure15

for estimating parameters in themedian regressionmodel using aweighted estimating equation. Chen et al. (2005) provided16

a rank estimation procedure to the partial linear model based on the Wilcoxon–Mann–Whitney estimating function. Wang17

and Wang (2009) suggested a locally weighted censored quantile regression approach by adopting the redistribution of18

mass idea. However, to the best of our knowledge, there is no existing work considering the frequentist model averaging19

for censored response data.20

In this paper, we develop a FIC and model averaging procedure for a partial linear model with randomly right-censored21

response. Unlike the traditional criteria aiming at selecting a ‘best’ model for all parameters, the FIC is adaptive for different22

focus parameters. The covariates may affect the response very differently in different quantile levels. Thus, to depict the23

comprehensive character of the distribution of the response, we have to consider the influence of the covariates on the24

center of the response as well as their influence on other quantiles. In addition, outliers might have significant impact on25

either the least-square or likelihood-basedmethods. Also, wemay confront heavy-tailedmodel errors. All of these motivate26

us to make model selection and run averaging in quantile regression to handle these problems.27

The remainder of the paper is organized as follows. Section 2 describes themodel framework and presents the estimation28

procedure under sub-models. Section 3 specifies the FIC and model averaging procedure as well as the confidence interval29

for the focus parameters. In Section 4, we develop a resamplingmethod to estimate the asymptotic covariancematrix of the30

proposed estimators. Section 5 reports some numerical results from simulation studies for evaluating the proposedmethod.31

An application to the primary biliary cirrhosis (BPC) data set is provided in Section 6. Some concluding remarks are given in32

Section 7. Proofs of theorems are relegated to the Appendix.33

2. Estimation procedure under sub-models34

Our aim is to model the relationship between the response T with a continuous distribution function F and its affecting35

explanatory variables. When censoring is present, some observations of the response cannot be observed but are known to36

be no less than the censoring values while others are completely observed. Let C be the censoring time with a continuous37

survival function G(t) = P(C > t). In what follows, for simplicity, we assume that C is independent of T and the explanatory38

variables. Themethods developed can be generalized to allow for the dependence between C and the explanatory variables,39

and some discussion about this is given in Section 7.40

Suppose that the true relationship between T and its explanatory variables can be described by the following partial41

linear model42

T = X⊤β0(τ )+ g0(Z, τ )+ ε(τ ), (1)43

at a fixed quantile level τ ∈ (0, 1), where X is a d × 1 vector of covariates linearly related to the response, Z is a covariate44

nonlinearly related to the response, ε is the model error with zero τ th conditional quantile given X and Z , β0(τ ) is the d-45

dimensional coefficient vector at the τ th quantile, g0(·, τ ) is an unknown smooth function at the τ th quantile. Although46

the ‘‘intercept’’ term does not appear in model (1), it is actually included in the functional component. For simplicity,47

we assume that Z is distributed on a compact interval [0, 1]. Also we suppress τ in β0(τ ) and g0(·, τ ) for notational48

convenience. Let {Ti, Ci, Xi, Zi, εi; i = 1, . . . , n} be independent replicates of {T , C, X, Z, ε}. Suppose that we observe49

{Yi, δi, Xi, Zi; i = 1, . . . , n}, where Yi = min(Ti, Ci), δi = I(Ti ≤ Ci), and I(·) is the indicator function.50

To estimate the functional component g0, we can approximate g0 by spline functions under mild smoothness51

assumptions. Let Tn, with 0 = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = 1 be a sequence of knots that52

partition the closed interval [0, 1] intomn +1 subintervals Ii = [tl+i, tl+i+1) for i = 0, . . . ,mn −1 and Imn = [tmn+l, tmn+l+1],53

where mn increases with the sample size n. Also let Sn(Tn, l) be the space of polynomial splines on [0, 1] of degree l ≥ 154

with knots Tn. Then, Sn(Tn, l) consists of functions that are polynomials of degree l on each of the subintervals, and are l− 155

times continuously differentiable on [0, 1] for l ≥ 2. Under proper conditions on g0 (e.g., Condition (C2) below), according56

to Corollary 4.10 of Schumaker (1981), we can approximate g0 as57

g0(z) ≈ B⊤(z)α0, (2)58
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