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a b s t r a c t

In this paper, we introduce a new varying-coefficient partially functional linear quantile
regression model, which combines varying-coefficient quantile regression model with
functional linear quantile regression model. The functional principal component basis and
regression splines are employed to estimate the slope function and varying-coefficient
functions, respectively, and the convergence rates of the estimators are obtained under
some regularity conditions. Simulations and an illustrative real example are presented.
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1. Introduction

Functional data analysis (FDA) is a topic of growing interest in statistics and is applied in econometrics, chemometrics,
biology, and other fields, see, for example, Ferraty and Vieu (2006) and Ramsay and Silverman (2002, 2005). In the simplest
setting, the functional predictor and the scalar response are related by a linear operator. For a scalar response Y and a
smooth square integrable random predictor process X(·) on a compact support T , the linear relationship between Y and X
is expressed as

E(Y |X) = α +


T

β(t)X(t)dt, (1)

where α is the intercept, slope function β(·) is assumed to be square integrable on T . We note that there are numerous
works on the functional linear regression model, see, e.g., Cai and Hall (2006), Cai and Yuan (2012), Cardot, Ferraty, and
Sarda (1999), Crambes, Kneip, and Sarda (2009), Hall and Horowitz (2007), Lei (2014), Yao, Müller, and Wang (2005) and
references therein.

Since the functional linear model is too restrictive on the regression relation, several extensions of functional linear
models have been proposed. These include semi-functional partial linear regression (Aneiros-Pérez & Vieu, 2006; Kong,
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Xue, Yao, & Zhang, 2016; Lian, 2011; Shin, 2009), varying-coefficient functional models (Cardot & Sarda, 2008; Wu, Fan,
& Müller, 2010), generalized functional linear models (Müller & Stadtmüller, 2005), functional additive models (Müller &
Yao, 2008), and so on. In addition, varying coefficient models (Fan & Zhang, 2008; Hastie & Tibshirani, 1993) are useful
extensions of the classical linearmodels, which extend the applications of local regression techniques from one dimensional
to multidimensional setting. Thus, Peng, Zhou, and Tang (2015) introduced varying-coefficient partially functional linear
regression models combining the functional linear model with the popular varying coefficient model for scalar variables.

However, the above-mentioned references are focused on mean regression, and relatively few studies are from quantile
regression perspective. Compared with classical conditional mean regression, quantile regression has at least three
advantages. First, quantile regression, in particular median regression, provides an alternative and complement to mean
regression while being resistant to outliers in responses; in addition, quantile regression is more efficient than mean
regression when the error follows a distribution with heavy tails. Second, quantile regression can give a more complete
picture on how the responses are affected by covariates. It is particularly useful when upper or lower or all quantiles are of
interest. This is attractive in economic and actuaries,where the tail behavior of the response conditional on covariates is often
concerned with. Third, quantile regression is capable of dealing with heteroscedasticity, the situation in which variances
depend on certain covariates. For a broad review on quantile regression, the reader may refer to Koenker (2005) and Kong,
Maity, Hsu, and Tzeng (2016). We also note that there are a few of references about FDA based on quantile regression, see,
e.g., Cardot, Crambes, and Sarda (2005), Kato (2012) and Lu, Du, and Sun (2014). In this paper,we consider varying-coefficient
partially functional linear quantile regression model, which includes not only the model in Kim (2007) but also the models
in Kato (2012) and Lu et al. (2014) as special cases.

Let Y be a real-valued randomvariable defined on a probability space (Ω, B, P),U and Z = (Z1, . . . , Zp)T be independent
one-dimensional and p-dimensional vectors of explanatory variables defined on the same probability space, respectively.
We suppose that U ranges over a non-degenerate compact interval, say [0, 1]. Also, let {X(t) : t ∈ T } be a zero mean,
second-order stochastic process valued in H = L2(T ), the set of all square integrable functions on T with inner product
⟨x, y⟩ =


T

x(t)y(t)dt, ∀x, y ∈ H and norm ∥x∥ = ⟨x, x⟩1/2. At a given quantile level τ ∈ (0, 1), the linear relationship
between Y and {X,U, Z} is assumed as

Y =


T

ατ (t)X(t)dt + ZTβτ (U) + ϵτ , (2)

where ατ (t) ∈ H and βτ (U) = (β1τ (U), . . . , βpτ (U))T are unknown smooth functions of U , ϵτ is a random error whose τ th
quantile conditional on (X, Z,U) equals zero. Without loss of generality, we suppose throughout that T = [0, 1]. For the
ease of presentation, we will suppress τ in ατ (t), βτ (U) and ϵτ in model (2) wherever clear from the context. Clearly, model
(2) generalizes both the varying-coefficient quantile regression (Kim, 2007) and the functional linear quantile regression
(Kato, 2012) which correspond to the cases α(t) = 0 and β(U) = 0, respectively. Note that model (2) becomes the partial
functional linear quantile regression (Lu et al., 2014) when β(U) = θ.

The rest of paper is organized as follows. In Section 2, we introduce the functional principal component analysis (FPCA)
and spline-based method to estimate the slope function and varying-coefficient functions, respectively. Section 3 gives
the rates of convergence of the estimators. Some simulation results and an example are presented in Sections 4 and 5,
respectively. We conclude this article with a brief discussion in Section 6. All proofs are given in Appendix.

2. Estimation methods

In this section, we describe how to estimate the slope function and varying-coefficient functions. As is discussed in
Delaigle and Hall (2012), the FPCA is a benchmark basis in functional data. Furthermore, regression splines have some
desirable properties in approximating a smooth function, and often provide good approximations with small number of
knots. For these reasons, we approximate the slope function by FPCA basis and varying-coefficient functions by regression
splines in the following.

Firstly, let (Xi, Zi, Yi,Ui), i = 1, . . . , n be i.i.d. realizations of (X, Y , Z,U), which are generated from model (2), i.e.

Yi =

 1

0
α(t)Xi(t)dt + β1(Ui)Zi1 + · · · + βp(Ui)Zip + ϵi. (3)

Define the covariance function of X and its empirical version respectively as

C(t, s) = Cov(X(t), X(s)), Ĉ(t, s) =
1
n

n
i=1

Xi(t)Xi(s).

The covariance function C defines a linear operator whichmaps a function f to Cf given by Cf (s) =

C(t, s)f (t)dt . We shall

assume that the linear operator with kernel C is positive definite. By the Mercer’s Theorem, we have

C(t, s) =

∞
i=1

λivi(t)vi(s), Ĉ(t, s) =

∞
i=1

λ̂iv̂i(t)v̂i(s),
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