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a b s t r a c t

Partial linear varying coefficient models are often used in real data analysis for a good
balance between flexibility and parsimony. In this paper, we propose a robust adaptive
model selection method based on the rank regression, which can do simultaneous coeffi-
cient estimation and three types of selections, i.e., varying and constant effects selection,
relevant variable selection. The new method has superiority in robustness and efficiency
by inheriting the advantage of the rank regression approach. Furthermore, consistency in
the three types of selections and oracle property in estimation are established as well.
Simulation studies also confirm our method.

© 2017 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

Partial linear varying coefficient models (PLVCM) (Ahmad, Leelahanon, & Li, 2005; Fan & Huang, 2005; Kai, Li, & Zou,
2011) are often considered for its good balance between flexibility and parsimony. There are a large number of literatures
on the estimation and variable selection for PLVCM. For estimation, we refer Ahmad et al. (2005), Fan and Huang (2005), Kai
et al. (2011), Wang, Zhu, and Zhou (2009), Zhang, Zhao, and Liu (2013) and Zhou and Liang (2009). For variable selection,
examples include but are not limited to Li and Liang (2008), Wang, Li, and Huang (2008), Wang and Lin (2016), Wang and
Xia (2009), Zhang et al. (2013), Zhao and Xue (2009) and Zhao, Zhang, Liu, and Lv (2014).

Themost important assumption in the aforementionedmethods is to assume that the subset of variables having constant
or varying effect on the response is known in advance, or say, the true model structure is determined. This assumption
underlies the construction of the estimators and investigation of their theoretical properties in the existing methods.
However, in the application, it is unreasonable to artificially determine which subset of variables has constant or varying
effect on the response.

To solve the above problem, Hu and Xia (2012), Leng (2009), Noh and Keilegom (2012) and Xia, Zhang, and Tong (2004)
proposed some methods to identify the partial linear structure. Furthermore, Tang, Wang, Zhu, and Song (2012) proposed
unified methods, which can select the relevant variables and partial linear structure simultaneously.

However, the aforementionedmethods aremainly built uponmean regression or likelihood basedmethods, which can be
adversely influenced by outliers or heavy-tail distributions. Although, Tang et al. (2012) gave a quantile regression method
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which is robust, it has limitations in terms of efficiency. Furthermore, the method in Tang et al. (2012) needed an iterative
two-step procedure that is very inconvenient in the application. Hence, it would be highly desirable to develop an efficient
and robust adaptive method that can simultaneously conduct model identification and estimation in one step.

Recently,Wang, Kai, and Li (2009) proposed a novel procedure for the varying coefficient model based on rank regression
and demonstrated that the newmethod is highly efficient across awide class of error distributions and possesses comparable
efficiency in the worst case scenario compared with mean regression. Similar conclusions on rank regression have been
further confirmed in Feng, Zou, Wang, Wei, and Chen (2015), Leng (2010), Sun and Lin (2014), and the references therein.

Therefore, motivated by the above discussion, we propose a robust adaptive model selection procedure in the rank
regression setting, which can do simultaneous coefficient estimation and three types of selections, i.e., varying and constant
effects selection, relevant variable selection. Specifically, we first embed the PLVCM into a varying coefficient model and
use the spline method to approximate unknown functions. Then, a two-fold SCAD (Fan & Li, 2001) penalty is employed
to discriminate the nonzero components as well as linear components from the nonlinear ones by penalizing both the
coefficient functions and their first derivatives. The new adaptive selection procedure has superiority in robustness and
efficiency by inheriting the advantage of the rank regression approach. Furthermore, consistency in the three types of
selections and oracle property in estimation are established as well. Although, Feng et al. (2015) also proposed a penalized
rank regression procedure, their method is only for selecting the relevant variables, which is completely different from our
method.

The rest of this paper is organized as follows. In Section 2, we introduce the new method and investigate its theoretical
properties and related implementation issues. Numerical studies are reported in Section 3. All the technical proofs are
provided in Appendix.

2. Robust adaptive model selection in rank regression

2.1. Two-fold penalization rank regression

Suppose that the observed full data set is

Dn = {Di = (Yi,X i,Ui), i = 1, . . . , n} , (2.1)

where Yi is the response of the ith observation, X i = (X (1)
i , . . . , X (p)

i )T ∈ Rp is the covariate vector, and assume index variable
Ui ∈ [0, 1]without loss of generality. Then PLVCMwith underlying true partial linear structure and irrelevant variablesmust
have the following form:

Yi =

∑
k∈AV

X (k)
i αk(Ui) +

∑
k∈AC

X (k)
i βk +

∑
k∈AZ

X (k)
i 0(Ui) + ϵi, (2.2)

where unknown sets AV , AC and AZ are the index sets for varying effects, nonzero constant effects and zero effects,
respectively, they are mutually exclusive and satisfyAV

⋃
AC

⋃
AZ = {1, . . . , p}.

Thus, given data set Dn, our main aim is to identify the index sets AV , AC , AZ , and estimate the nonzero coefficients
αk(u), k ∈ AV and βk, k ∈ AC efficiently and robustly.

As the partial linear structure is unknown in advance, the PLVCM (2.2) can be embedded into the following varying
coefficient model:

Yi = X (1)
i α1(Ui) + · · · + X (p)

i αp(Ui) + ϵi. (2.3)

Thus, if αk(u) ≡ 0 for u ∈ [0, 1], X (k) is an irrelevant variable, otherwise, if derivative α′

k(u) ≡ 0 for u ∈ [0, 1], then X (k) has
constant effect, otherwise, αk(u) is a varying function. Therefore, problem becomes that of determining which αk(·)s are zero
functions and which α′

k(·)s are zero functions.
Then, we can use the polynomial splines to approximate the αk(·)s. Let 0 = τ0 < τ1 < · · · < τKn < τKn+1 = 1 be

a partition of [0, 1] into Kn + 1 subintervals Inj = [τj, τj+1), j = 0, . . . , Kn − 1, and InKn = [τKn , τKn+1], where Kn = nϑ

with 0 < ϑ < 0.5 is a positive integer such that max1≤j≤Kn+1|τj − τj−1| = O(n−ϑ ). Let Fn be the space of polynomial
splines of degree D ≥ 1 consisting of functions f satisfying: (i) the restriction of f to Inj is a polynomial of degree D for
0 ≤ j ≤ Kn; (ii) f is (D − 1)-times continuously differentiable on [0, 1] (Schumaker, 1981). There exist B-spline basis
functions B(·) = (B1,D(·), . . . , Bdn,D(·))T forFn, where dn = Kn + D + 1 (Schumaker, 1981). Then αk(u) can be approximated
as

αk(u) ≈

dn∑
j=1

Bj,D(u)γk,j = B(u)Tγk, (2.4)

where γk = (γk,1, . . . , γk,dn )
T .
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